
University of Aveiro Dep. Electronics, Telecommunications and Informatics
2025

Danilo Silva
Guilherme Santos
João Pinto
Pedro Pinto
Tomás Santos

AI-Powered Platform for Smart City Issue
Detection & Resolution

University of Aveiro Dep. Electronics, Telecommunications and Informatics
2025

Danilo Silva
Guilherme Santos
João Pinto
Pedro Pinto
Tomás Santos

AI-Powered Platform for Smart City Issue
Detection & Resolution

Document submitted to the University of Aveiro in fulfillment of the requirements for

the approval of the curricular unit Project in Informatics. Carried out under the scientific

supervision of Doctor Susana Sargento, Full Professor at the Department of Electronics,

Telecommunications and Informatics of the University of Aveiro, and Doctor Pedro Rito,

Assistant Professor at the Department of Electronics, Telecommunications and Informat-

ics of the University of Aveiro.

acknowledgements We would like to thank our supervisors, Professor Doctor Susana Sargento and
Professor Doctor Pedro Rito, for all the knowledge they shared with us and for
their availability throughout the development of this work. A special thanks also
goes to Joaquim Ramos, Marcos Mendes and Gonçalo Perna for their invaluable
support in the PIXKIT autonomous vehicle integration in our platform. Finally,
we would like to thank the Instituto de Telecomunicações and all its staff and
collaborators with whom we interacted, for providing all the necessary conditions
for the successful execution of this work.

Keywords Artificial Intelligence, Smart City, Urban Incidents, Geospatial Indexing, Large Lan-
guage Models, Kubernetes Orchestration, Distributed Databases, Asynchronous
Processing, Internet of Things, Edge Computing

Abstract This report presents FixAI, an AI-driven platform engineered to optimize urban
issue detection and resolution within smart city frameworks. The system features
a dual-interface approach: a mobile application for citizen reporting, which lever-
ages AI for faster incident description, categorization, and location acquisition via
photo submissions; and a desktop application for municipal operators, facilitating
efficient incident management through categorization, filtering, and heatmap vi-
sualizations. The foundational architecture of FixAI prioritizes high scalability and
reliability, employing Apache Cassandra for structured data storage and MinIO for
efficient management of multimedia content such as photos and videos. Kuber-
netes orchestrates seamless deployment and scaling of these components. A signif-
icant innovation lies in the integration of Google’s Gemini Large Language Model
(LLM), which, in conjunction with an Apache Kafka message broker, enables ro-
bust asynchronous processing of AI tasks, including incident detail generation and
intelligent clustering of related reports. Furthermore, the platform demonstrates
automated issue resolution capabilities through its integration with edge devices,
notably exemplified by a proof of concept with the PIXKIT autonomous vehicle,
which verifies resolved problems and updates system statuses for municipal oper-
ator validation. Future development trajectories include investigating self-hosted
LLM solutions and more in-depth computer vision models for enhanced privacy
and specialized performance, alongside advancements in H3 geospatial indexing
for optimized distributed storage and accelerated spatial queries.

Contents

Contents i

List of Figures iv

List of Tables vi

List of Acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Most Relevant Results . 3
1.4 Document Organization . 4

2 Preliminaries 5
2.1 Related Work . 5
2.2 Background concepts . 6

2.2.1 Web Model . 6
2.2.2 FastAPI Web Framework . 7
2.2.3 Cassandra Database . 8

2.2.3.1 Column-Oriented Storage Model 8
2.2.3.2 Typical Applications . 10

2.2.4 Image and Video Storage Solutions . 10
2.2.4.1 Storage Models Overview . 11
2.2.4.2 Comparative Analysis: Object vs File vs Database Storage 12
2.2.4.3 MinIO vs. AWS S3 . 12

2.2.5 Kubernetes . 13
2.2.5.1 Core Workload Controllers . 13
2.2.5.2 Networking and Service Discovery 14
2.2.5.3 Persistent Storage . 14
2.2.5.4 Cluster Architecture . 15
2.2.5.5 Scalability and High Availability 16
2.2.5.6 K3s: Lightweight Kubernetes Distribution 17

2.2.6 Geographic Coordinate System . 17
2.2.6.1 Ray Casting Algorithm . 17

2.2.7 H3 Index . 17
2.2.7.1 Index Definition . 18
2.2.7.2 Neighborhood Traversal . 19
2.2.7.3 Subdivision for Irregular Polygon Regions 19
2.2.7.4 Distortion . 20

2.2.8 Large Language Models (LLMs) . 21
2.2.8.1 Definition and Characteristics . 21

i

2.2.8.2 Cloud-Based vs. Self-Hosted Solutions 22
2.2.8.3 Asynchronous LLM Processing . 22

3 Product and Vision Concept 24
3.1 Vision Statement . 24
3.2 Product Concept Overview . 24
3.3 User-Centered Design . 25

3.3.1 Personas . 25
3.3.2 Scenarios . 26
3.3.3 User Stories . 27
3.3.4 Identified Use Cases . 28

3.3.4.1 Mobile Application . 28
3.3.4.2 Desktop Application . 29

3.4 Non-Functional Requirements . 30

4 Architecture Notebook 32
4.1 Architecture Overview . 32

4.1.1 Architecture Diagram . 32
4.1.2 Deployment Diagram . 35
4.1.3 Data Access Diagram . 35

4.2 Technology Stack . 36

5 Implementation 38
5.1 Frontend Applications . 38

5.1.1 Mobile Application . 38
5.1.2 Desktop Application . 41

5.1.2.1 Desktop App vs. Web App . 44
5.2 Backend Services . 44

5.2.1 API Design and Endpoints . 44
5.2.1.1 API Layer Architecture . 45
5.2.1.2 Middleware and Cross-Origin Resource Sharing (CORS) 45
5.2.1.3 API Modularization and Routing 46
5.2.1.4 Key API Endpoints and Functionalities 46
5.2.1.5 Error Handling . 48

5.2.2 Database Integration . 48
5.2.2.1 Column-Based (Cassandra) . 48
5.2.2.2 Object Storage (MinIO) . 49

5.2.3 H3 Integration for Spatial Operations . 49
5.2.3.1 Organisation Indexing . 49
5.2.3.2 Incident Indexing . 50

5.2.4 Asynchronous Job Processing . 50
5.2.4.1 User Report Flow Description . 51
5.2.4.2 Job 1 - Generate Description, Category and Severity 52
5.2.4.3 Job 2 - Cluster Related Reports 53
5.2.4.4 Job 3 - Update Incident Description and Severity 54

5.3 Security Mechanisms . 56
5.3.1 Tokens, Cookies and Session Management 56

5.3.1.1 Login Process . 56
5.3.1.2 Successful Request Flow . 56
5.3.1.3 Failed Request Handling . 57
5.3.1.4 Access Token Refresh Mechanism 57
5.3.1.5 Frontend Session Management . 58
5.3.1.6 Benefits of this Approach . 58

5.3.2 Role Based Access Controll (RBAC) . 59

ii

5.4 Issue Automatic Resolution . 59
5.4.1 Backend Process Overview . 60
5.4.2 Existing Solutions for Video Transmission 60
5.4.3 Smartphone Client . 61
5.4.4 ATCLL (PIXKIT) Integration . 62

5.5 Infrastructure and Deployment . 63
5.5.1 Kubernetes-Based Orchestration Setup . 64
5.5.2 Cassandra Deployment Setup . 66
5.5.3 Kafka & Zookeeper Deployment Setup . 67
5.5.4 MinIO & Redis Deployment Setup . 67
5.5.5 Stateless Deployments: Backend & LLM Consumers 68
5.5.6 Final Steps for Deployment . 68

5.6 Quality Assurance . 69
5.6.1 Code Quality Standards . 69
5.6.2 Agile Methodology (Backlogs, Sprints, Workflows) 69
5.6.3 Team Meetings and Retrospectives . 70

6 Conclusion and Future Work 71
6.1 Conclusion . 71
6.2 Future Work Directions . 71

Bibliography 73

iii

List of Figures

2.1 Portuguese municipal citizen reporting applications: Na Minha Rua Lx, @Coimbra,
and ReportaPorto. 5

2.2 GovPilot - Modern Local Government Management Software. 6
2.3 A Minha Rua (gov.pt) platform. 6
2.4 Schematic representation of the Model-View-Controller (MVC) architectural pattern. 7
2.5 Cassandra Ring Topology and Data Distribution. 9
2.6 Row-oriented Storage. 9
2.7 Column-oriented Storage. 9
2.8 File Storage Hierarchical Structure. 12
2.9 Kubernetes Cluster Architecture. 15
2.10 Hierarchical indexing structure of the H3 system (Source: Uber Engineering [Eng]). 18
2.11 Neighborhood comparison between polygons-based grid (Source: Uber Engineering

[Eng]). 19
2.12 Geographic Representation of Aveiro, including the University Area. 19
2.13 H3 Hexagonal Grid Compaction Process. Leaves Only (72 KiB) vs Tree (8 KiB)

(Source: Uber Engineering [Eng]). 20
2.14 Comparison of distortion using S2 and H3 grids for sample data in San Francisco. 21

3.1 Persona: João - Citizen Reporter. 25
3.2 Persona: Ana - City Control Operator. 26
3.3 Use Case Model of the FixAI System. 28
3.4 Use Case Diagram – Mobile Application. 29
3.5 Use Case Diagram - Desktop Application. 30

4.1 Architecture Diagram with Kubernetes Pods. 32
4.2 Deployment Diagram with Infrastructure. 34
4.3 Data Access Diagram. 36

5.1 Mobile Application – Home, Map, Camera and Report pages. 39
5.2 Mobile Application – List, Details, Settings and Account pages. 39
5.3 Frontend Loading Context for API calls. 40
5.4 Portuguese Translations Example (pt.json). 41
5.5 Translations Usage Example. 41
5.6 Mobile Application – Different Languages in Home Page. 42
5.7 Desktop Application Dashboard Page. 43
5.8 FixAI Desktop – Desktop Application Incidents Map Page. 43
5.9 FixAI Desktop – Desktop Application Incident Details Page. 43
5.10 Full-Stack representation - Request Flow. 45
5.11 Add Organization Workflow. 49
5.12 Overall Incident Processing Flow in FixAI, showcasing H3 Indexing, AI-Driven

Classification, Clustering Related Reports and Incident Updated Details Based on
New Occurences. 50

iv

5.13 User Reports an Occurrence Flow Description. 51
5.14 Flow Diagram for Job 1 - Generating Incident Description, Category, and Severity

using LLM. 53
5.16 Flow Diagram for Job 3 - Update Incident Description and Severity. 54
5.15 Flow Diagram for Job 2 - Cluster Related Reports. 55
5.17 Security Login Process. 56
5.18 Security Successful Request Flow. 57
5.19 Security Failed Request Handling. 57
5.20 Security Access Token Refresh Mechanism. 58
5.21 Camera Field of View and Incident Mapping in the System. 61
5.22 PIXKIT Physical Components. 62
5.23 PIXKIT Integration Diagram. 63
5.24 Demonstration of PIXKIT Camera, Vision and Hexagon-Based Incident Evaluation

(Video Demo: here). 64
5.25 Kubernetes Implementation Diagram. 65
5.26 Kubernetes Docker Registry Secret Command. 68
5.27 Kubernetes Image Pull Secret Configuration. 68

v

https://youtu.be/vhJe7rC87BM

List of Tables

2.1 Comparison of Cassandra with Traditional RDBMS. 10
2.2 Comparison of Storage Models. 13
2.3 Kubernetes Service Types. 14
2.4 Kubernetes Control Plane Components. 16
2.5 Kubernetes Data Plane Components. 16
2.6 Comparison of Popular LLM Solutions. 22

4.1 Technology Stack Overview. 37

vi

List of Acronyms

AI Artificial Intelligence

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

ATCLL Aveiro Tech City Living Lab

BLOBs Binary Large Objects

CD Continuous Delivery

CDNS Content Delivery Networks

CI Continuous Integration

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CQL Cassandra Query Language

DNS Domain Name System

DTOs Data Transfer Objects

GCS Geographic Coordinate System

GDPR General Data Protection Regulation

GHCR GitHub Container Registry

GNSS Global Navigation Satellite System

GPU Graphics Processing Unit

HCD Human-Centered Design

HPA Horizontal Pod Autoscaler

HTTP Hypertext Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IoT Internet of Things

IPC Inter-Process Communication

IPs Internet Protocol Addresses

IPVS IP Virtual Server

vii

JWT JSON Web Token

LLM Large Language Model

ML Machine Learning

MMLU Massive Multitask Language Understanding

MQTT Message Queuing Telemetry Transport

MVC Model-View-Controller

NFS Network File System

NoSQL Not Only SQL

OCI Open Container Initiative

OLTP Online Transaction Processing

OS Operating System

PID Process Identifier

POC Proof-of-concept

PRs Pull Requests

PV Persistent Volume

PVCs Persistent VolumeClaims

RBAC Role-Based Access Control

RDBMS Relational Database Management System

REST Representational State Transfer

RTMP Real-Time Messaging Protocol

RTSP Real Time Streaming Protocol

S3 Simple Storage Service

SDK Software Development Kit

SQL Structured Query Language

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

TTL Time-To-Live

UI User Interface

URIs Uniform Resource Identifier

URL Uniform Resource Locator

UUIDs Universally Unique Identifiers

V2X Vehicle-to-Everything

VM Virtual Machine

VPA Vertical Pod Autoscaler

XSS Cross-Site Scripting

viii

Chapter 1

Introduction

1.1 Motivation

The continuous growth and intricate evolution of urban centers present a corresponding esca-
lation in challenges pertaining to infrastructure maintenance, public safety, and the overall quality
of urban life. Traditionally, the process by which citizens report urban issues, such as potholes,
damaged public infrastructure, or instances of vandalism, has been characterized by its inherent
inefficiency and fragmentation. Relying predominantly on conventional channels, including phone
calls, emails, or rudimentary municipal applications, these methods frequently prove cumbersome,
slow, and unresponsive, often leading to considerable frustration for the citizens. Moreover,
the diverse origins of complaints and occurrences, spanning social media, emails, and traditional
telecommunication, underscore the imperative for a centralized platform to streamline and op-
timize this entire reporting process. These existing applications, primarily designed solely for
reporting problems, largely depend on extensive manual data input. This dependence renders
the reporting process bureaucratic and arduous for citizens, despite their genuine interest in
contributing to civic improvements, and it highlights significant usability challenges within these
systems.

Furthermore, a critical aspect is that these applications were not architected for seamless in-
tegration within the growing smart city paradigm, where the leveraging of diverse edge data
sources is paramount. Such integration is critical for bringing a wealth of real-time information
into these systems. Access to a vast quantity of varied data sources would enable functionalities
such as the real-time detection of nascent urban problems, facilitating the automatic verification
of resolved issues, and fostering a truly data-driven approach to urban governance. This paradigm
shift is paramount for significantly enhancing urban resilience and operational efficiency. Conse-
quently, the development of a truly ”data-driven” application necessitates a robust and scalable
architecture capable of supporting vast volumes of data and requests. This inherently requires a
system designed for high scalability, built upon a microservices architecture, and incorporating
redundancy to ensure resilience against failures.

Additionally, the advent of recent advancements in Artificial Intelligence (AI) technologies
presents a transformative opportunity to enhance these urban management systems. AI could
significantly assist both citizens and municipal authorities in event reporting, for instance, by
automatically populating occurrence details from submitted photographs. Furthermore, these
intelligent technologies offer a potent solution to the pervasive problem of data redundancy for
city councils. It is a major challenge currently, as multiple citizens often report the same issue,
leading to substantial time expenditure for municipal staff. A system dimensioned to intelligently
identify and group these redundant reports would considerably streamline the workload for city
operators. Moreover, such intelligent systems could dynamically assess the escalating severity of
a particular problem based on new citizen reports, automatically updating its status for the city
operator. This capability would allow operators to swiftly identify and prioritize urgent issues,

1

thereby ensuring more timely and effective urban interventions.

1.2 Objectives

The overarching aim of our project is the creation of an intelligent system designed to optimize
and enhance the detection and resolution of urban issues. To achieve this primary objective, a
series of specific goals have been defined.

A fundamental objective involves the comprehensive study and adaptation of a robust solution
for spatial geographic mapping and indexing. This solution will be crucial for efficiently repre-
senting urban areas and must be capable of supporting complex scenarios such as overlapping
jurisdictions or organizations – for instance, enabling both a municipal council and a university
within the same city to operate as distinct entities on our platform. Furthermore, the chosen
indexing approach should prioritize efficiency and seamless integration with smart city in-
frastructures that incorporate diverse and dynamic data sources, including real-time information
from moving vehicles.

From a development standpoint, the project’s objective is to develop a platform encompass-
ing two main components: a mobile application for citizens and a desktop application for city
operators. Firstly, a mobile application for citizens should be developed to facilitate
effortless incident reporting; users should be able to simply capture a photograph and the ap-
plication must automatically process and populate the incident details in a matter of seconds.
This should include leveraging Artificial Intelligence (AI) for precise incident description, cat-
egorization (e.g., damaged traffic lights, compromised pavement) and severity assessment, while
automatically obtaining the location from the device. Users must also be able to consult their
incident history and track the status of each report (i.e., pending, in progress, or resolved). Its
interface should support dual representations, allowing users to view incidents and their associ-
ated details in both list and map formats. Secondly, a desktop application for city operators
must provide a comprehensive digital representation of reported urban problems. Operators
must be able to view incidents grouped by category within a customizable dashboard. The
system must support various filters (e.g., by problem category or resolution status) and should
consolidate all occurrences related to a specific incident onto a dedicated page to reduce redun-
dancy and streamline operator workflow. This detailed incident page must enable operators to
update the incident’s status. Analogous to the mobile application, the desktop interface must
offer an intuitive map view displaying all incidents, with capabilities to filter by category and
present incident heatmaps for rapid visual identification of problematic regions.

From an architectural standpoint, a key objective is to design and implement a platform
capable of handling substantial data volumes, ensuring high scalability and fault tolerance.
This requires the selection of an appropriate database solution, particularly for storing user-
submitted photographs, which should leverage object storage capabilities. Furthermore, this
objective also encompasses acquiring the necessary expertise and implementing technologies
such as Kubernetes to effectively scale and deploy the system on the infrastructure provided by
the Instituto de Telecomunicações.

Regarding Artificial Intelligence integration, a crucial goal is to meticulously research and
evaluate various Large Language Model (LLM) solutions, considering both self-hosted and cloud-
based options. This evaluationwill involve a thorough analysis of their respective advantages and
disadvantages to select the optimal solution within the project’s time constraints. The chosen LLM
must then be seamlessly integrated with a message broker to facilitate robust asynchronous
job processing for AI-driven tasks.

Finally, the project aims to integrate data originating from edge devices into the platform.
This should involve enabling camera-equipped devices to autonomously detect their proximity to
a registered urban problem and, through video analysis, ascertain if the problem has been resolved,
providing the city operator with video evidence and a suggested resolution status for review and
confirmation. Complementing these functional objectives, a strong emphasis should be placed
on development quality, ensuring adherence to stringent code quality standards across all project

2

repositories to guarantee long-term maintainability. This should include the implementation of
a Continuous Delivery (CD) pipeline and the execution of comprehensive system capacity tests to
accurately assess the platform’s performance.

1.3 Most Relevant Results

The development of the system has yielded a comprehensive set of functional and technical
achievements, aligning with all defined objectives and incorporating additional features.

A robust geospatial mapping and indexing solution has been successfully implemented, uti-
lizing the H3 framework, an open-source system developed by Uber. This solution effectively
provides an efficient spatial representation, adeptly managing complex scenarios such as overlap-
ping jurisdictions and enabling distinct organizational entities within the same geographic area to
operate on the platform. Its design further supports seamless integration with various smart city
data sources, including real-time information from moving vehicles.

A dual-interface platform has been successfully developed. The mobile application for
citizens enables effortless incident reporting through photo capture, with AI capabilities auto-
matically generating incident descriptions, categorizations and severity assessments, while auto-
matically acquiring location data. The application further allows users to consult their incident
history and track report statuses through an intuitive interface offering both list and map views.
Concurrently, the desktop application for city operators provides a comprehensive digital
representation of urban problems. Operators can view categorized incidents within a customisable
dashboard, apply various filters (e.g., by category, status), and access dedicated incident pages that
consolidate all related occurrences, thereby minimizing redundancy. This interface also facilitates
status updates and offers an intuitive map view with incident filtering and heatmap visualizations
for efficient problem identification.

From an architectural perspective, the platform has been designed and implemented to handle
substantial data volumes, demonstrating high scalability and fault tolerance. This includes the
successful selection and integration of a high-write database solution (Cassandra) for core data,
complemented by an appropriate object storage system (MinIO) for user-submitted photographs.
The entire system has been effectively deployed and scaled using Kubernetes on the infrastructure
of the Instituto de Telecomunicações, showcasing its robust deployment capabilities.

Regarding Artificial Intelligence integration, we selected a Large Language Model (LLM) so-
lution (Gemini, from Google), which has been seamlessly integrated with a message broker to
facilitate robust asynchronous job processing for various AI-driven tasks such as description/cat-
egorization of the occurrence (Job 1), clustering of related reports (Job 2), and dynamic incident
detail updates (Job 3).

A key achievement includes the integration of data from edge devices for automatic issue
resolution. A successful proof of concept was realized using the PIXKIT autonomous vehicle from
the Instituto de Telecomunicações. This demonstration showcased the system’s ability to integrate
with smart city infrastructure, where the vehicle, equipped with sensors and a camera, could detect
when it passed by a previously reported and resolved urban problem. Upon detection, the system
automatically provides the city operator a video evidence and a suggested ”resolved” status for
confirmation. This autonomous vehicle was chosen for the proof of concept due to the belief that
future vehicles will widely incorporate cameras, making them pervasive sources of real-time data
for such platforms.

In addition to fulfilling the primary objectives, several important features and practices were
implemented. These include comprehensive support for multiple languages, implementation
of robust session management with refresh tokens for enhanced security, establishment of a
reliable continuous delivery (CD) pipeline for streamlined deployments, and comprehensive
secure account management. Furthermore, the mobile application provides a report any-
where capability, allowing users the flexibility to report issues either directly on-site or from their
homes. Overall, adherence to stringent code quality standards throughout all project repositories
ensures long-term maintainability, further solidifying the system’s foundation.

3

1.4 Document Organization

This document is structured into six distinct chapters, each designed to provide a comprehen-
sive understanding of our project, from its foundational concepts to its implementation, validation,
and future prospects.

As described before, this chapter provides an overarching view of the work, detailing the
motivations and context that underpinned the project’s inception. Furthermore, it explicitly
defines the objectives that guided its execution and highlights the most relevant results achieved
throughout the study.

Chapter 2, Preliminaries, serves to establish the foundational knowledge base. It com-
mences with an analysis of existing Related Work in the domain of urban issue-reporting plat-
forms, identifying current solutions and their limitations. Subsequently, it delves into essential
Background Concepts crucial for understanding our project’s architecture and functionalities, en-
compassing topics such as web frameworks, database solutions, image and object storage, container
orchestration, geospatial indexing, and the application of Large Language Models (LLMs).

Chapter 3, Product and Vision Concept, articulates the core idea behind our project.
It presents the project’s Vision Statement and a comprehensive Product Concept Overview. A
significant portion is dedicated to the User-Centered Design (HCD) methodology employed, de-
tailing the identified user profiles, their experiences through scenarios, defining their needs via
user stories, and outlining the specific use cases for both the mobile and desktop applications.
The chapter concludes by enumerating the critical Non-Functional Requirements that govern the
system’s quality attributes.

Chapter 4, Architecture Notebook, provides a deep dive into the system’s structural
design. It offers an Architecture Overview, complete with various diagrams illustrating the system’s
architecture, deployment, and data access patterns. This chapter also elaborates on the chosen
Technology Stack that underpins our platform.

Chapter 5, Implementation, constitutes the technical core of the report, detailing the prac-
tical realization of our project. It describes the development of the Frontend Applications (Mobile
and Desktop) and thoroughly explains the Backend Services, covering API design, database in-
tegration (for both structured and object data), geospatial operations using H3, and a detailed
exposition of the Asynchronous Job Processing mechanisms, including those leveraging LLMs for
various tasks. Furthermore, it explains the Issue Automatic Resolution components, outlines the
Infrastructure and Deployment strategies for our distributed system components, and summarizes
the Quality Assurance practices.

Finally, Chapter 6, Conclusion and Future Work, summarizes the main Conclusions
drawn from the entire body of work. It also outlines promising Future Work Directions, suggest-
ing potential improvements for LLM integration, geospatial optimization, and enhanced security
measures, paving the way for the continued evolution of our project.

4

Chapter 2

Preliminaries

2.1 Related Work

This section provides a critical analysis of existing solutions within the domain of urban issue-
reporting platforms, identifying their current capabilities and inherent limitations. It further
highlights areas where the integrated use of artificial intelligence can significantly enhance efficiency
and expedite the reporting process for citizens.

Municipal Citizen Reporting Applications: Na Minha Rua Lx, @Coimbra, and Re-
portaPorto. Common among Portuguese municipalities, applications such as Na Minha Rua
Lx (Lisbon), @Coimbra (Coimbra), and ReportaPorto (Porto), present in Figure 2.1, serve as pri-
mary digital channels for citizens to communicate urban issues to local authorities [Lis25], [Coi25],
[Por25]. While these platforms successfully establish a direct line of communication, their func-
tionalities often present significant operational friction. A pervasive limitation observed across
these applications is the absence of automatic geolocation detection, requiring users to
manually input addresses or precisely pinpoint locations on a map, which frequently leads to data
inaccuracies and an increased reporting effort for the citizen. Furthermore, the lack of intelli-
gent categorization necessitates manual selection of the problem type from a predefined list, a
process that is significantly time-consuming. Critically, users on these platforms are required to
manually compose textual accounts of the issues, a process that could be significantly improved
if AI-generated descriptions were offered. This suite of manual requirements collectively renders
the reporting process more time-consuming and cumbersome, diminishing user engagement and
discouraging the submission of valuable reports.

Figure 2.1: Portuguese municipal citizen reporting applications: Na Minha Rua Lx, @Coimbra,
and ReportaPorto.

Government Management Platforms: GovPilot. GovPilot, depicted in Figure 2.2, is a
comprehensive government management software suite widely utilized in the United States, of-
fering modules for both citizen issue reporting and municipal operations management [Gov25b].
While providing a robust framework for municipal operations, its approach to incident reporting
reveals certain areas for enhancement concerning user efficiency. Notably, the submission process

5

for citizens often proves time-consuming due to the requirement for users to complete lengthy
forms, meticulously select problem categories and subcategories, and manually specify
the exact location of the incident. These manual steps contribute to a less streamlined user
experience. Beyond these specific aspects of incident reporting, GovPilot functions as a widely
adopted application by various states for broader governmental management.

Figure 2.2: GovPilot - Modern Local Government Management Software.

National Citizen Interaction Platforms: A Minha Rua (gov.pt). A Minha Rua, a service
integrated within the official Portuguese government portal (gov.pt), present in Figure 2.3, aims
to centralize citizen interactions regarding various public services [Gov25a]. Despite its national
scope and foundational role in digital governance, its application for reporting urban incidents
shares several functional and usability drawbacks. These include, but are not limited to, the ab-
sence of automatic location detection and the reliance on manual selection for problem
categorization.

Figure 2.3: A Minha Rua (gov.pt) platform.

Crucially, due to its national scope, A Minha Rua faces the challenge of non-adhering mu-
nicipalities. In such instances, citizens residing in these areas are compelled to utilize alternative
problem reporting systems provided by their local authority or contact them directly, fragmenting
the reporting ecosystem. This national centralisation presents both advantages and disadvantages.
On one hand, it offers the benefit of unifying the reporting process, providing citizens with a single,
known platform for submitting issues across the country. On the other hand, this broad scope in-
herently means the platform may not be optimally tailored to the specific operational nuances and
unique requirements of individual municipalities. This lack of municipal-specific optimisation can
lead to the omission of particular functionalities or refinements that could significantly enhance
user satisfaction and operational efficiency at a local level.

In conclusion, while current urban issue-reporting platforms effectively establish channels for
citizen participation, they largely remain reliant on manual human input. With the growing trend
towards smart cities and the increasing availability of diverse data sources, particularly from edge
devices, it becomes imperative for these systems to be designed from their inception to facilitate
seamless integration. Such integration would enable the real-time detection of new urban problems,
the automatic verification of resolved issues, and a more dynamic and data-driven approach to
urban governance. This transition from purely human-driven reporting to an intelligent, sensor-
informed framework represents the next crucial step in enhancing urban resilience and efficiency.

2.2 Background concepts

2.2.1 Web Model

The architecture of user-facing applications has evolved considerably over the years to ad-
dress increasing demands for scalability, maintainability and performance. Among the foun-
dational architectural patterns that have shaped modern software design is the Model-View-

6

Controller (MVC) paradigm. MVC promotes a clear separation of concerns by organizing
applications into three distinct layers: the Model, the View and the Controller [Gam+94].
The Model layer encapsulates the application’s data and business logic, managing state tran-
sitions and ensuring data integrity. It is responsible for interfacing with data storage systems,
processing user actions and applying the business rules that govern application behavior. The
View layer, in contrast, is concerned with rendering the user interface based on the current state
of the Model. It provides the mechanisms by which information is visually communicated to the
user, ensuring clarity and responsiveness. The Controller serves as the intermediary that han-
dles user interactions, interpreting user inputs to manipulate the Model and triggering updates to
the View. This dynamic interaction loop enables a responsive and intuitive user experience while
maintaining a clean and modular architecture, as illustrated in Figure 2.4.

View

Model

Controller

User

Updates Manipulates

Shows Uses

Model

Figure 2.4: Schematic representation of the Model-View-Controller (MVC) architectural pattern.

To support interoperability between distributed components, modern web applications fre-
quently rely on Application Programming Interfaces (APIs). An API defines a standardized set of
operations that enable communication between client and server systems. One of the most
widely adopted architectural styles for API design is Representational State Transfer (REST),
which utilizes standard HTTP methods, such as GET, POST, PUT and DELETE, to manipulate re-
sources identified by Uniform Resource Identifiers (URIs). RESTful APIs are characterized by
their statelessness, resource orientation and uniform interface, making them particularly suitable
for scalable and distributed web services.

While REST has become a de facto standard for web API development, alternative commu-
nication protocols offer distinct advantages in specific scenarios. Remote Procedure Call (gRPC),
developed by Google, utilizes Protocol Buffers (protobuf) for efficient binary serialization, provid-
ing high-performance communication with low latency. It is particularly well-suited for microser-
vices architectures, where inter-service communication efficiency is critical [Goo24b]. WebSocket
technology enables full-duplex, real-time communication over a single, persistent connection, sup-
porting applications that require immediate bidirectional data exchange, such as live chat sys-
tems, real-time notifications and interactive dashboards. Message Queuing Telemetry Transport
(MQTT), on the other hand, is a lightweight publish/subscribe protocol specifically designed for
Internet of Things (IoT) applications. Its minimal overhead and robust delivery mechanisms make
it ideal for resource-constrained devices operating in unreliable network conditions [MQT24].

These architectural principles and communication protocols collectively provide the foundation
for building robust, scalable and user-centric web applications capable of meeting the diverse
requirements of modern digital ecosystems.

2.2.2 FastAPI Web Framework

Developing a backend service capable of supporting scalable, high-performance interactions
over HTTP requires the implementation of a REST API. Among the various web frameworks

7

available for this purpose, FastAPI has gained considerable recognition for its effectiveness, partic-
ularly in scenarios that demand asynchronous execution, high concurrency and low latency
[Fas25].

One of FastAPI’s most significant advantages lies in its foundation on the Python program-
ming language, recognized for its simplicity and readability. While Python is typically considered
less performant than compiled languages, FastAPI mitigates these limitations through native sup-
port for asynchronous programming. By leveraging Python’s async and await syntax, FastAPI
enables non-blocking I/O operations, allowing the server to handle multiple concurrent client
requests efficiently. This capability significantly reduces response times and runtime overhead,
making FastAPI particularly suitable for high-throughput applications such as real-time data pro-
cessing and distributed microservices, where scalability and responsiveness are essential. FastAPI
applications are typically deployed using Uvicorn, a high-performance Asynchronous Server
Gateway Interface (ASGI) server [Uvi25]. Uvicorn’s lightweight architecture and compatibility
with asynchronous frameworks enable FastAPI to deliver low-latency and high-concurrency
performance. Independent performance benchmarks, such as those conducted by TechEmpower,
have consistently ranked FastAPI, when deployed with Uvicorn, among the highest-performing
Python web frameworks [Fas25],[Tec25]. Another notable strength of FastAPI is its native
support for the OpenAPI standard (formerly known as Swagger) [Ope25]. FastAPI automati-
cally generates comprehensive API documentation, which not only reduces development effort but
also enhances maintainability by providing a clear and standardized description of the available
API endpoints. This feature benefits both developers and stakeholders by simplifying system
understanding and integration.

Despite these advantages, FastAPI presents certain limitations when compared to more ma-
ture enterprise-grade frameworks such as Spring [Spr25]. Its ecosystem remains relatively smaller
and less mature, offering fewer enterprise-level plugins, libraries and extensions. Furthermore,
FastAPI lacks out-of-the-box support for several critical features, including authentication, role-
based access control and background job management. These functionalities must be implemented
manually or integrated through external solutions, potentially increasing the complexity of devel-
opment and maintenance.

2.2.3 Cassandra Database

Apache Cassandra is an open-source, distributed NoSQL database designed to handle large
volumes of data with high availability, fault tolerance and no single point of failure. It is especially
well-suited for applications requiring scalability, continuous uptime and efficient management of big
data across multiple servers or data centers. This database employs a peer-to-peer, ring-based
architecture without a master node, as described in Figure 2.5, ensuring equal responsibility
among all nodes, eliminating single points of failure and allowing the system to remain operational
even if entire data centers go offline [LM10]. Nodes in the ring communicate status and membership
changes using the gossip protocol, a decentralized peer-to-peer communication method where
nodes periodically exchange information about themselves and other nodes they know about.
This ensures that all nodes in the cluster maintain an up-to-date view of the cluster’s state.
Data is automatically replicated across multiple nodes and data centers, providing robust fault
tolerance and continuous availability [LM10]. Cassandra scales horizontally by adding more
servers, maintaining performance and reliability as data volume grows. It is designed to handle
massive amounts of structured data efficiently and for large datasets, Cassandra often outperforms
traditional relational databases, especially as data size increases, offering faster query response
times and higher throughput [ASS18].

2.2.3.1 Column-Oriented Storage Model

Unlike traditional relational databases that store data in rows, Cassandra employs a column-
oriented storage model.

8

NODE

NODE

NODE

NODE

NODE

NODE

CASSANDRA

Ring Cluster / Datacenter

Read/Write Paths
Gossip Protocol

Peer-to-Peer
Distributed System

Figure 2.5: Cassandra Ring Topology and Data Distribution.

In a row-oriented database, data for each record is stored together sequentially. For the
following example data, it would be organized as follows:

[UserId , Name , Age , Country]
[1, Alice , 25, Portugal]
[2, Bob , 30, France]
[3, Charlie , 28, Spain]

Figure 2.6: Row-oriented Storage.

Each entry represents a complete row containing the UserID, Name, Age and Country for an
individual.

In contrast, a column-oriented database like Cassandra stores all the values for a single
column together. The same example data would be conceptually stored as:

UserID: [1, 2, 3]
Name: [Alice , Bob , Charlie]
Age: [25, 30, 28]
Country: [Portugal , France , Spain]

Figure 2.7: Column-oriented Storage.

Here, all the UserIDs are stored contiguously, followed by all the Names, then all the Ages
and finally all the Countries. This difference in storage layout offers significant advantages for
certain types of queries and workloads. For example, when a query only needs a subset of columns
(e.g., just the ’Name’ and ’Country’), Cassandra only reads the relevant data from disk, leading to
improved read performance and reduced I/O compared to row-oriented databases that would
read entire rows for each matching record. Furthermore, the similarity of data within a column
(e.g., all ages are integers, all countries are strings) often allows for more effective compression,
resulting in storage savings. While Cassandra does have schemas, they are more dynamic than in
relational databases, permitting the addition of new columns to a ”column family” (similar to a
table) without affecting existing rows, a flexibility well-suited for evolving data structures [LM10].

9

The fundamental unit of data in Cassandra is a cell, a tuple comprising a column name, a
value and a timestamp. Rows are collections of these cells, uniquely identified by a primary
key. Column families, or tables in the Cassandra Query Language (CQL), are then collections
of these rows. Although CQL provides a tabular abstraction for user interaction, the underlying
storage mechanism remains fundamentally column-oriented [LM10]. To achieve scalability and
high availability, Cassandra distributes data across nodes based on the partition key (first part
of the primary key) using consistent hashing. This process assigns data to specific token ranges
on a logical ring of nodes. Replication, configured per keyspace, ensures fault tolerance by storing
copies of the data on multiple nodes. Within a partition, rows are often ordered by the optional
clustering key (the second part of the primary key). When querying, if the full partition key is
provided, Cassandra efficiently routes the request to the responsible node(s). The strategic choice
of the partition key is critical for balanced data distribution and optimal performance [LM10].
The Table 2.1 shows some comparisons with the traditional RDBMS.

Table 2.1: Comparison of Cassandra with Traditional RDBMS.

Feature Cassandra Traditional RDBMS
Data Model NoSQL, wide-column, flexible Relational, fixed
Scalability Horizontal, easy to add nodes Often vertical
Availability High, no single point of failure Varies
Query Language CQL (limited joins/views) SQL (rich joins)

2.2.3.2 Typical Applications

Building upon its core features of high scalability, availability and good write performance,
Cassandra’s architecture and data model render it an ideal choice for a diverse range of demand-
ing applications. For instance, its efficient handling of write-intensive operations and its capacity
to effectively query data based on temporal ranges make it particularly well-suited for managing
and analyzing time-series data originating from sources such as sensors, financial markets, or
application logs [CH10]. The growing field of the Internet of Things (IoT), with its charac-
teristically massive data volumes generated by numerous connected devices, also finds a robust
solution in Cassandra’s scalable and fault-tolerant nature, enabling real-time data ingestion and
processing.

Furthermore, social media platforms and web-scale and cloud applications, such as
Facebook, which grapple with high write throughput demands and need to manage vast quanti-
ties of concurrent user interactions and data points like feeds, activity streams and user profiles,
requiring high availability, zero downtime and the ability to scale horizontally across global data
centers, significantly benefit from Cassandra’s capabilities [CH10]. Even e-commerce platforms,
where managing extensive product catalogs, order histories and user sessions with high availability
is paramount, can consider Cassandra as a viable option for specific aspects of their infrastructure
due to its decentralized, peer-to-peer architecture ensuring no single point of failure. Cassan-
dra also supports applications for real-time analytics and online transaction processing
(OLTP) by providing the ability to handle high-velocity data streams [CKL15].

Ultimately, while Cassandra offers compelling advantages for these types of applications, it
remains crucial to carefully evaluate the specific requirements of a given use case, particularly
concerning the complexity of required queries and the stringency of consistency guarantees, to
determine if it represents the most appropriate database solution.

2.2.4 Image and Video Storage Solutions

Modern applications often rely on the ability to store and retrieve multimedia content effi-
ciently, especially images and videos. Choosing the appropriate storage strategy is essential for
ensuring scalability, performance and maintainability. In this section, we explore the main models

10

available for media storage, with special attention to object storage due to its flexibility, scalability
and strong alignment with cloud-native architectures.

2.2.4.1 Storage Models Overview

Several architectural approaches exist for handling media files, each offering distinct benefits
and trade-offs depending on the application requirements and infrastructure constraints. The
three most common storage models are Database Storage, where media files are stored as
binary data (BLOBs) within relational databases; File System Storage, which organises files
using hierarchical directory structures on physical or virtual disks; and Object Storage, which
adopts a flat and highly scalable model based on buckets and uniquely identifiable objects.

We provide a detailed explanation of each model below, highlighting the advantages and disad-
vantages of each, with a particular emphasis on object storage due to its relevance to our system
architecture.

Database Storage (BLOBs). In this model, binary files such as images and videos are stored
directly inside a relational database using a special data type called BLOB (Binary Large Object).
The media files are stored alongside metadata in a structured schema, which can simplify consis-
tency and integrity between the data and the media. This approach offers advantages like atomic
transactions and centralised access control through SQL. However, database storage presents per-
formance and scalability limitations, especially for large media files or high-throughput access.
Databases are optimized for structured data and storing large binary files can lead to increased
database size, slower backups and complex maintenance operations.

File System Storage. This traditional approach uses the operating system’s hierarchical direc-
tory structure to organize and store media files on disk. Each file is saved as a discrete entity and
accessed via a file path. Metadata is typically stored separately, either in a database or in sidecar
files. This model provides fast local access and is relatively simple to implement. It scales mod-
erately well in controlled environments, such as within enterprise infrastructure or hosted servers.
However, managing access control, redundancy and metadata can be cumbersome at scale, es-
pecially in distributed systems. Moreover, network file systems (e.g., NFS, SMB) can introduce
bottlenecks under heavy loads.

Figure 2.8 illustrates the hierarchical structure typical of file system storage, where folders
group files into directories and subdirectories, mimicking a tree-like layout. This visualization
highlights the simplicity and organization of file-based systems, but also hints at their limitations
in terms of flat scalability and distributed access.

Object Storage (Bucket Storage). Object storage is a modern, highly scalable solution de-
signed specifically for unstructured data such as images, videos and backups. Unlike the file system
model, object storage does not use a hierarchical structure. Instead, data is stored as objects in a
flat namespace, often organized into logical containers called buckets.

Each object consists of:

• Data: the actual binary content of the file.

• Metadata: customizable key-value pairs associated with the object (e.g., content type,
owner, creation timestamp).

• Unique Identifier: a globally unique ID or key used to retrieve the object.

Objects are accessed through HTTP-based REST APIs, typically using endpoints that follow
the pattern https://<endpoint>/<bucket>/<object>. This makes object storage ideal for
cloud environments, where it integrates seamlessly with web applications, content delivery
networks (CDNs) and microservices. One of the key advantages of object storage is its near-infinite
scalability. Systems like Amazon S3, Google Cloud Storage and MinIO are designed to scale

11

Figure 2.8: File Storage Hierarchical Structure.

horizontally by adding storage nodes without impacting availability. Features such as automatic
replication, versioning and lifecycle policies enhance durability and reduce administrative overhead.

Furthermore, object storage is optimized for durability and cost efficiency. Most systems use
distributed erasure coding and replicate data across multiple locations to ensure resilience. For
example, Amazon S3 is architected to provide exceptional durability, with a design target of
99.999999999% (commonly referred to as “eleven nines”) of data durability. By default, S3 stores
data redundantly across at least three Availability Zones, offering built-in protection against the
failure of an entire data center [Ama25]. Due to its flexibility, metadata support and seamless
integration with modern development stacks, object storage is increasingly the preferred solution
for storing large volumes of multimedia content in both enterprise and cloud-native applications.

2.2.4.2 Comparative Analysis: Object vs File vs Database Storage

To evaluate which storage model is best suited for image and video storage, it is crucial to
analyze them along key operational and architectural dimensions. This comparison, summarized
in Table 2.2, focuses on six essential metrics: scalability, performance, data structure, ease of
access, cost efficiency and durability.

In summary, while database and file system storage models may be suitable for small-scale
or on-premise use cases, they quickly become inadequate as data volume, access requirements, or
availability expectations grow. Object storage provides a robust and scalable solution tailored to
modern cloud-native workloads, making it the preferred model for storing media assets in
distributed systems.

2.2.4.3 MinIO vs. AWS S3

MinIO. MinIO is a high-performance, open-source object storage solution designed to be com-
patible with the Amazon S3 API. It can be deployed on-premises or in private clouds and is
particularly suitable for edge computing, hybrid cloud environments and developers seeking full
control over their infrastructure. MinIO supports key S3-compatible operations and integrates
seamlessly with tools and libraries designed for AWS S3, making it an attractive lightweight al-
ternative for local or private deployments [Min25].

Amazon S3. AWS S3 (Simple Storage Service), on the other hand, is a fully managed object
storage service provided by Amazon Web Services (AWS). It offers unmatched scalability, avail-
ability and durability. With multiple storage classes designed for varying access patterns and cost

12

Table 2.2: Comparison of Storage Models.

Metric Database Storage File System Storage Object Storage
Scalability Limited; databases are

not optimized for large
binary files

Moderate; scales with
filesystem and disk
management

High; designed for
massive horizontal
scaling in distributed
environments

Performance Slower for large media
files; query overhead
impacts speed

Fast for local access,
but limited in dis-
tributed setups

High; optimized for
large unstructured
data and parallel ac-
cess

Data Structure Structured (BLOBs
inside relational
schemas)

Hierarchical (folders
and paths)

Flat namespace with
metadata and unique
identifiers

Ease of Access Requires SQL queries;
not ideal for direct me-
dia serving

Simple for local access;
harder for remote/dis-
tributed access

Accessible via REST
APIs or SDKs; ideal
for web/cloud environ-
ments

Cost Efficiency Expensive for large
volumes; storage not
optimized

Moderate; depends on
hardware and mainte-
nance

Very high; supports
tiered storage classes
for access frequency

Durability High with proper repli-
cation, but not built-in

Depends on back-
up/RAID configura-
tion

Very high; built-in
redundancy (e.g., 11
nines in AWS S3)

optimization, S3 serves as the backbone for cloud-native applications requiring long-term, resilient
storage [Ama25].

Despite the difference in their deployment models and licensing (MinIO being open-source and
AWS S3 being a commercial service), both systems share a high degree of compatibility through
the S3 API. This allows developers to prototype or deploy solutions using MinIO and later migrate
to AWS S3 with minimal changes to the application codebase. Such compatibility is particularly
advantageous in agile development environments or when cloud migration is planned for the future.

2.2.5 Kubernetes

Kubernetes is an open-source system for automating deployment, scaling and management of
containerized applications. It adopts a declarative, control-plane/data-plane architecture in
which the control plane maintains the desired cluster state and the data plane executes workloads
on the nodes [HBB17]. In the following subsections, we detail the core workload controllers,
networking abstractions, persistent storage mechanisms, cluster architecture, scalability features
and the lightweight K3s distribution.

2.2.5.1 Core Workload Controllers

Kubernetes orchestrates application workloads by defining and monitoring declarative resource
objects. The primary workload controllers, Pods, Deployments and StatefulSets, form the
foundation for running both stateless and stateful services, enabling consistent scaling, self-healing
and ordered deployment behaviors. In the following paragraphs, we introduce each of these con-
trollers and their roles within the cluster.

Pods. A Pod is the smallest deployable unit, encapsulating one or more co-located containers
that share the same Linux namespaces (network, IPC, PID) and storage volumes, all scheduled

13

and managed as a single entity [Kub25p]. They are intrinsically ephemeral: when evicted or
deleted, new Pods receive distinct IPs and are created from scratch.

Deployments. ADeploymentmanages stateless applications by maintaining a desired number
of identical Pod replicas and providing declarative updates to the Pod template [Kub25c]. It
handles replication (scaling up/down), self-healing (replacing failed Pods) and ensures that
all Pods run the specified container image version, making it ideal for microservices and
front-end workloads where no per-Pod persistent identity is required.

StatefulSets. StatefulSetsmanage stateful applications by assigning each Pod a unique, stable
network identity (via ordinal indices) and persisting storage volumes across restarts. Pods are
created and terminated in strict ordinal order, guaranteeing ordered initialization (e.g., clustered
databases) and safe scaling operations [Kub25r].

2.2.5.2 Networking and Service Discovery

Services. In Kubernetes, a Service is a stable abstraction that defines a logical set of Pods and
a policy by which to access them. Services decouple clients from Pod IPs, which can change over
time, by providing a consistent virtual IP address and DNS name. Depending on the networking
requirements and the desired exposure level, Kubernetes supports several Service types, each
suited to different use cases. Table 2.3 summarizes the four primary Service types and their
typical applications [Kub25q].

Table 2.3: Kubernetes Service Types.

Type Description and Use Case
ClusterIP Default; exposes the Service on an internal IP in the cluster. Used

for inter-Pod communication.
NodePort Exposes the Service on the same port of each Node’s IP. Useful

for simple external access without a load balancer.
LoadBalancer Provisions an external load balancer (cloud providers) to forward

to NodePorts. Ideal for production services requiring L4 routing.
ExternalName Maps the Service to a DNS name (no proxy). Enables accessing

external resources via a Service abstraction.

Headless Services. By setting clusterIP: None, Headless Services disable virtual IP alloca-
tion and instead return individual Pod IPs via DNS, enabling client-driven load balancing or peer
discovery for StatefulSets [Kub25d].

Ingress. An Ingress is a KubernetesAPI object that defines Layer 7 (HTTP/HTTPS) routing
rules, mapping incoming requests (by host and path) to Services within the cluster, thereby
centralizing traffic management at the edge of the platform [Kub25g]. An Ingress Controller
(e.g., NGINX, Traefik) watches for these resources and configures a reverse proxy to implement
the specified rules [Kub25h].

2.2.5.3 Persistent Storage

PersistentVolumes and PersistentVolumeClaims. PersistentVolumes (PVs) represent
physical storage resources (block, file) with defined capacity, access modes (e.g., ReadWriteOnce,
ReadWriteMany) and reclaim policies. PersistentVolumeClaims (PVCs) are user-defined re-
quests that bind to matching PVs or trigger dynamic provisioning via the referenced StorageClass
[Kub25o].

14

Figure 2.9: Kubernetes Cluster Architecture.

StorageClasses. StorageClasses abstract dynamic volume provisioning by specifying a pro-
visioner plugin (e.g., AWS EBS, NFS CSI), parameters (e.g., reclaimPolicy, IOPS) and binding
mode. Users reference a StorageClass in a PVC to request particular performance or durability
characteristics without managing the underlying infrastructure [Kub25s].

NFS Server. An NFS (Network File System) Server exports directories over TCP/IP,
enabling multiple clients to mount shared file systems. In Kubernetes contexts, an external NFS
server can run on bare-metal or a VM, exporting one or more shares (e.g., /mnt/nfs) for Pods to
mount.

NFS Subdir External Provisioner. The CSI nfs-subdir-external-provisioner automates
PV creation on an existing NFS export by allocating per-PVC subdirectories. This removes the
need for cluster administrators to pre-create NFS shares, enabling seamless network-file-system
storage for stateful workloads [Kub25n; Kub25a].

2.2.5.4 Cluster Architecture

In Kubernetes, the cluster architecture is logically divided into two planes: the control plane ,
which makes global scheduling and state-management decisions and the data plane , which runs
the actual workload on each node, as shown in Figure 2.9.

Control Plane. The control plane is responsible for maintaining the desired state of the clus-
ter, scheduling Pods, responding to events (e.g. bringing up replacement Pods when replicas
fail) and exposing the API surface that users and controllers interact with. It is mainly
composed by the items summarized in Table 2.4 and, by default, the node hosting these compo-
nents (often called the “master” node) is tainted to prevent regular Pods from being scheduled
there, however, administrators may remove this taint if they wish to run application Pods on the
control-plane node itself.

15

Table 2.4: Kubernetes Control Plane Components.

Component Description
kube-apiserver Exposes the Kubernetes API over HTTPS, handles authentica-

tion, authorization, admission control, and persists all resource
definitions to etcd [Kub25i].

etcd A distributed, strongly consistent key–value store that holds
the entire cluster state, provides watch APIs for real-time syn-
chronization, and enables failover via clustering [etc24].

kube-scheduler Watches for unscheduled Pods and assigns them to nodes based
on resource requests, constraints (affinity/anti-affinity, taints/-
tolerations), and scheduling policies to optimize resource uti-
lization [Kub25k].

kube-controller-manager Runs various controllers (e.g., Node, Deployment, StatefulSet)
in a single binary. Each controller reconciles the actual cluster
state with the desired state as specified in the API [Kub25m].

Table 2.5: Kubernetes Data Plane Components.

Component Description
kubelet Node agent that registers the node with the API server, watches

for Pod specification objects, and ensures containers described
in Pods are launched, remain healthy, and conform to resource
constraints [Kub25l].

kube-proxy Manages network rules on each node (using iptables or IPVS) to
implement Services, load-balance traffic, and maintain virtual IPs
for internal clients [Kub25j].

Container runtime Implements the OCI runtime interface to pull, unpack, start,
and manage container images (e.g., containerd or Docker).
containerd is preferred for its stability, performance isolation,
and minimal footprint [Kub25b].

Data Plane. Each worker node in the data plane hosts the local agents and runtimes that
execute Pods, enforce networking and report status back to the control plane. This can only be
possible with the components listed in Table 2.5.

2.2.5.5 Scalability and High Availability

Horizontal Pod Autoscaling The Horizontal Pod Autoscaler (HPA) adjusts the replica
count of Deployments or StatefulSets based on observed metrics (CPU, memory, custom metrics),
enabling workloads to scale in response to demand [Kub25f].

Vertical Pod Autoscaling. Vertical Pod Autoscaler (VPA) recommends or enforces ad-
justments to Pod resource requests and limits at runtime, optimizing cluster utilization and work-
load performance [Kub25t].

Control Plane High Availability. Control-plane components can be deployed in multi-
master mode, with etcd clustered across nodes and API servers behind a virtual IP or load-
balancer for failover, ensuring continuous scheduler and controller operation during node failures
[Kub25e].

16

2.2.5.6 K3s: Lightweight Kubernetes Distribution

K3s is a CNCF–certified, single-binary distribution that bundles the control plane and es-
sential services (Flannel CNI, CoreDNS, sqlite3 by default) into a <100 MB package. It uses a
simplified datastore (embedded sqlite3 or external etcd/MySQL) and reduced dependencies, mak-
ing it ideal for edge computing, IoT devices, CI/CD pipelines and resource-constrained
environments while retaining full API compatibility with upstream Kubernetes [Ran25].

2.2.6 Geographic Coordinate System

One of the most common ways to represent a location on the Earth’s surface is through the
Geographic Coordinate System (GCS). This system uses latitude and longitude to define positions
on a spherical model of the Earth. Latitude (ϕ) represents the angular distance from the Equator,
while longitude (λ) represents the angular distance from the Prime Meridian.

This model is practical and widely used in various applications such as navigation, mapping
services and data collection, especially when the points of interest are independent and do not
require relational analysis with other locations. It provides a simple way to store and share
locations globally, making it the standard in many systems.

Several algorithms have been proposed for this representation. One widely adopted method
is the Ray Casting Algorithm, described in the following section as a foundational approach for
point-in-polygon analysis.

2.2.6.1 Ray Casting Algorithm

The Ray Casting Algorithm is a classical computational geometry technique employed to solve
the point-in-polygon problem, [Fra99]. Given a point and a polygon defined by an ordered sequence
of vertices, the algorithm determines whether the point lies inside or outside the polygon by
projecting an imaginary ray from the point and counting the number of intersections between the
ray and the polygon’s edges.

Formal Definition. Let P (x, y) be a point in R2 and P = {(x1, y1), (x2, y2), . . . , (xn, yn)} a
simple polygon defined by n sequentially connected vertices. The algorithm proceeds as follows:

1. Cast a semi-infinite ray from P in a fixed direction (typically along the positive x-axis).

2. Count the number of intersections between the ray and the polygon’s edges.

3. If the number of intersections is odd, classify P as inside the polygon; otherwise, classify P
as outside.

Edge Cases. Special care must be taken when the point P lies exactly on an edge or vertex of
P. Such conditions require numerical tolerance handling or explicitly defined boundary rules to
ensure stable and deterministic behavior.

Computational Complexity. The computational cost for processing a single polygon is O(n),
where n is the number of polygon edges. When extended to a collection ofm polygons {P1, . . . ,Pm},
the overall complexity becomes O(m × n), assuming uniform polygon sizes. This linear scaling
arises because the algorithm requires evaluating every edge of every polygon independently.

2.2.7 H3 Index

H3 is a geospatial indexing system developed by Uber Technologies to efficiently partition the
Earth’s surface into a hierarchical grid of hexagonal cells [Eng] for geospatial data visual-
ization and analysis. Unlike traditional coordinate-based representations, H3 enables fast spatial

17

Figure 2.10: Hierarchical indexing structure of the H3 system (Source: Uber Engineering [Eng]).

queries, neighborhood traversal and scalable geometric operations by assigning a unique integer-
based index to each hexagonal cell while maintaining a small distortion. Its hierarchical nature
supports multiple resolutions, allowing applications to dynamically balance precision and perfor-
mance based on operational requirements.

Hexagonal grids, shown in Figure 2.10, are particularly advantageous in geospatial systems due
to their superior properties when compared to square or triangular grids. Specifically, hexagons
provide uniform neighbor distances, minimize edge effects and allow seamless hierarchical subdi-
vision without introducing singularities like those found in latitude-longitude systems.

2.2.7.1 Index Definition

The core of the H3 system is its indexing mechanism, which assigns a globally unique 64-bit
integer identifier, referred to as an H3 index, to each hexagonal cell on the Earth’s surface. This
index encodes several properties, including the resolution level and the spatial position of the cell
within the grid hierarchy.

Formally, the Earth is projected onto an icosahedron, which is then recursively subdivided into
finer hexagonal cells across multiple resolution levels. Each resolution step increases the granularity
by a factor of approximately seven, enabling both coarse and fine-grained spatial representations.

The H3 index is defined by:

• Resolution Level: An integer value ranging from 0 (coarsest) to 15 (finest), representing
the level of detail.

• Base Cell: One of the 122 base cells that tile the icosahedron.

• Cell Position: Encoded in a sequence of directional steps from the base cell to the target
cell at the desired resolution.

This compact representation allows for efficient storage, comparison and transmission of geospa-
tial data. Additionally, it supports fast computation of neighboring cells, parent-child relationships
and spatial containment, making it highly effective for scalable spatial analysis.

The hierarchical design of H3 also enables spatial aggregation operations, where data can be
generalized from finer to coarser resolutions without recomputing raw geographic coordinates.
This makes H3 an effective foundation for geospatial data systems that require multi-resolution
support.

18

2.2.7.2 Neighborhood Traversal

One key property of H3 indexes is the ease with which neighboring cells can be identified. This
characteristic highlights why hexagons are superior to triangles and squares for spatial indexing.
For instance, triangles, when used for tessellation, have 12 neighbors. However, these neighbors
vary in their proximity: some share an edge, while others only share a vertex, leading to differing
distances between them. Squares, while simpler in their grid structure, also suffer from non-
uniform distances between a central cell and all of its direct neighbors. In contrast, hexagons are
unique among regular polygons in that all of their direct neighbors share an edge and are
equidistant from the central hexagon, as shown in Figure 2.11.

(a) Triangle-based grid with 12
neighbors.

(b) Squared-based grid with 8
neighbors.

(c) Hexagonal-based grid with 6
neighbors.

Figure 2.11: Neighborhood comparison between polygons-based grid (Source: Uber Engineering
[Eng]).

This uniformity in neighbor distance is crucial for efficient and simple spatial queries. This
property greatly simplifies ”neighborhood traversal”, the process of finding and analyzing nearby
locations, which is fundamental for many location-based services and analytical tasks.

2.2.7.3 Subdivision for Irregular Polygon Regions

Representing irregular polygons on a map is a complex task. Traditional latitude and longitude
schemes, especially when using a large number of points to define regions, can lead to significant
inefficiencies. For example, if we consider the city of Aveiro, Portugal, it might be represented by
approximately 939 reference points, as shown in Figure 2.12b. Applying an algorithm like Ray-
Casting to such a large number of points would be highly inefficient for point-in-polygon checks.
Furthermore, representing nested regions, such as the University of Aveiro within the city (which
alone could require 169 points), would add further complexity.

(a) Aveiro map with the University shown using
lines.

(b) Aveiro map with the University shown using
points.

Figure 2.12: Geographic Representation of Aveiro, including the University Area.

To optimize this representation using hexagons, one approach is to define a region composed of
H3 cells corresponding to a specific region or area. This region can then be stored in a KeyValue

19

map store, where each key is an h3 cell, allowing us to determine the associated region id for
any given coordinates. This process can be conceptualized as:

(latitude, longitude) → h3 cell (low resolution)

KeyValue(h3 cell) → region id
(2.1)

While feasible, a potential issue arises with the quantity of cells that would need to be stored
in the hash map to accommodate this flow, as each hexagonal area would require an associated
region ID.

Approximately, for the city of Aveiro, with an area of 197.58 km2 and considering hexagons with
resolution 13, which provide a precision of approximately 22.135 m2, around 8,926,400 hexagons
would be needed for the projection of its area. However, a large part of an organization’s area,
particularly in its interior, does not require such fine detail. Hexagons, although not perfect
like squares for fitting arbitrary shapes, allow for subdivision into seven smaller hexagons (or,
more precisely, a parent hexagon can be ”compacted” to represent its child hexagons at a finer
resolution). This enables a compaction strategy where multiple fine-grained hexagons belonging
to a region can be represented by a single larger hexagon, as illustrated in Figure 2.13.

Figure 2.13: H3 Hexagonal Grid Compaction Process. Leaves Only (72 KiB) vs Tree (8 KiB)
(Source: Uber Engineering [Eng]).

This approach offers numerous benefits in terms of memory consumption and data management
complexity, while maintaining an O(1) search complexity. This O(1) efficiency is achieved because
given a (latitude, longitude) pair, the H3 system can directly compute a unique h3 cell index at
any desired resolution. This allows for a direct lookup in a key value map, which on average, is
a constant-time operation. Furthermore, this search can operate in a recursive manner, starting
from a higher resolution and progressively moving to lower (finer) resolutions as needed. For
instance, if a point’s region isn’t found at a high resolution, the system can ascend the hierarchy
to coarser parent cells, performing direct O(1) lookups at each step, all while preserving the overall
O(1) lookup efficiency.

2.2.7.4 Distortion

Distortion is a critical aspect when working with geospatial indexing systems, primarily be-
cause the Earth is a sphere, not a flat plane. To project a spherical surface onto a 2D grid, various
projection methods are employed, all of which inevitably introduce some degree of distortion. The
goal of such projections and a key strength of H3, is to minimize this error and allow for seamless
transformations between the spherical and planar representations. H3 achieves this by choosing
the Icosahedron as its base geometric shape for global tessellation. While any projection will

20

inherently have some distortion, the choice of the Icosahedron significantly reduces angular distor-
tion compared to other shapes like a cube, which would exhibit very large distortions, especially
at its vertices.

Another notable advantage of the Icosahedron, particularly when used with a Dymaxion pro-
jection, is that the areas with the highest distortion tend to fall over water bodies. This is a
significant benefit for many land-based applications, as it ensures that the most crucial land areas
experience minimal distortion, preserving the accuracy of spatial analyses.

This distortion is not as critical in terms of the size of individual cells, but rather in the
consistency of distances between cells and their neighbors. In different geographic locations,
the actual physical distances between cells might vary, impacting a wide range of applications.
However, with the hexagonal grid used by H3, these distortions are minimized, ensuring a more
uniform and reliable representation of distances across the globe.

Below, in Figure 2.14, you can see a visual comparison of how H3’s hexagonal cells and Google’s
S2 quadrilateral cells represent regions on a map, illustrating the difference in their shapes and
how distortion might manifest.

(a) S2-based spatial representation. (b) H3-based spatial representation.

Figure 2.14: Comparison of distortion using S2 and H3 grids for sample data in San Francisco.

2.2.8 Large Language Models (LLMs)

Large Language Models (LLMs) are advanced artificial intelligence systems designed to process
and generate human-like text. They achieve this by being trained on extensive corpora of diverse
textual data, enabling them to perform a wide range of language-related tasks, including but not
limited to summarization, translation, code generation and question answering [Bro+20].

2.2.8.1 Definition and Characteristics

The rise of LLMs began in 2018 with the release of BERT by Google [Dev+18], marking
a significant advancement in natural language understanding. This was followed by OpenAI’s
GPT-3 in 2020, which demonstrated unprecedented capabilities in language generation with 175
billion parameters [Bro+20]. Recent developments, such as OpenAI’s GPT-4 and Google’s Gemini,
have further expanded these capabilities, including the integration of multimodal processing that
supports both textual and visual. One of the core operational principles of LLMs is the use
of a context window, which defines the maximum number of tokens (words, punctuation and
spaces) the model can process in a single interaction. Early models like GPT-3 supported context
windows of up to 4,096 tokens, limiting their ability to handle extensive documents or maintain
long conversations. In contrast, contemporary models such as GPT-4 and Gemini offer expanded

21

context windows ranging from 8,000 to over 1 million tokens, significantly improving their capacity
to manage complex and lengthy interactions [Dee23].

Modern LLMs also exhibit multimodal capabilities, allowing them to process various types
of data, including text, images and audio. This versatility enhances their applicability across
different domains, from automated customer service to advanced medical diagnostics.

Benchmark evaluations have shown that state-of-the-art LLMs not only exceed average hu-
man performance in general language tasks but also demonstrate competitive results against do-
main experts in specialized fields. These evaluations are typically conducted using standardized
datasets and metrics such as the Massive Multitask Language Understanding (MMLU) bench-
mark [Hen+20].

2.2.8.2 Cloud-Based vs. Self-Hosted Solutions

Deploying LLMs can follow two primary strategies: cloud-based services and self-hosted solu-
tions. Cloud-based LLM services, provided by vendors such as OpenAI and Google, offer straight-
forward integration via APIs. These services eliminate the need for infrastructure management,
making them ideal for fast prototyping and proof-of-concept (PoC) development [Ope24].
They typically include free usage tiers, allowing limited access to their capabilities without finan-
cial commitment. For example, Google’s Gemini API provides a free tier with a capped number
of requests per minute, suitable for small-scale experiments and early-stage validation [Goo24a].

In contrast, self-hosted LLM solutions grant organizations full control over data privacy, secu-
rity and model customization. By deploying models on private infrastructure, organizations can
ensure that sensitive information remains confined within their controlled environment, addressing
regulatory requirements such as the General Data Protection Regulation (GDPR) [Eur16]. More-
over, self-hosting enables offline deployments, removing dependency on external internet services.

A key advantage of self-hosted LLMs is the ability to perform fine-tuning. Fine-tuning in-
volves further training a pre-existing model on domain-specific datasets to optimize its performance
for specialized tasks. This process allows organizations to improve the model’s accuracy on tasks
such as legal document summarization or technical support automation. However, fine-tuning re-
quires access to substantial computational resources, typically involving high-performance GPUs
and must be carefully managed to avoid overfitting.

It is important to note that for PoC and early-stage projects, leveraging general-purpose cloud-
based models without fine-tuning is often sufficient. These models provide a cost-effective and low-
risk pathway to validate concepts before committing to the complexities of self-hosted solutions.
The following Table presents a comparative overview of popular LLM offerings.

Table 2.6: Comparison of Popular LLM Solutions.

Model Multimodal Scalability Free Tier Accuracy Self-Hosted 1M Tokens
GPT-4 Yes High Limited High No $5.00
Gemini Yes High Limited High No $0.10
DeepSeek Yes Yes Yes Medium Yes Self-Hosted

2.2.8.3 Asynchronous LLM Processing

The integration of Large Language Models (LLMs) into real-time and high-demand applications
necessitates architectural strategies that support scalability and responsiveness. Asynchronous
processing is one such strategy, enabling systems to decouple computationally intensive lan-
guage tasks from user-facing operations. This architecture ensures that long-running processes,
such as image classification, summarization, or document analysis, do not block the main
execution flow, thereby maintaining a fluid and responsive user experience [New15].

In asynchronous architectures, task delegation is commonly managed through message queues
or distributed streaming platforms. Technologies such as Apache Kafka, RabbitMQ and Amazon

22

SQS exemplify widely adopted solutions in this domain [Apa24], [VMw24], [Ama24]. These plat-
forms serve as intermediaries that facilitate the queuing, distribution and persistence of processing
jobs between producers (e.g., API endpoints) and consumers (e.g., backend workers or LLM ser-
vices). They support message durability, delivery guarantees and horizontal scalability, essential
features for robust AI-powered applications.

This pattern is particularly well-suited to LLM workflows, where task durations can vary sig-
nificantly based on input complexity, model characteristics and available compute resources. By
leveraging asynchronous processing paradigms, modern architectures enhance throughput, im-
prove system resilience and enable more efficient utilization of AI capabilities across distributed
infrastructures.

23

Chapter 3

Product and Vision Concept

3.1 Vision Statement

The proposed system envisions a smarter urban platform where city operators and citizens
collaboratively contribute to enhancing the overall quality of life in the city. This collaboration is
essential for addressing urban challenges effectively and responsively.

Currently, incident reporting is often conducted manually through inefficient channels such
as phone calls or emails. These fragmented methods lead to delayed responses and hinder the
ability of municipal authorities to prioritize and resolve the most pressing and recurring urban
issues. The absence of a direct and structured communication channel between citizens and public
services further exacerbates these inefficiencies.

To address these limitations, the platform seeks to modernize the entire lifecycle of urban issue
management, from initial reporting to resolution, by leveraging artificial intelligence, geospatial
indexing and scalable infrastructure. This vision aligns with the principles of digital transformation
in public administration and contributes to broader smart city initiatives.

3.2 Product Concept Overview

The proposed platform, FixAI, is an AI-driven system designed to optimize the detection,
classification and resolution of urban infrastructure issues. It combines citizen input with auto-
mated backend processing to establish a continuous, data-informed feedback loop between users
and municipal authorities.

The system comprises two primary user-facing components: a mobile application and a
desktop interface. The mobile application enables citizens to report urban incidents with minimal
effort. Users can capture a photo of the issue, after which the application automatically extracts
relevant metadata, such as geolocation coordinates. An integrated AI module processes the image
to generate a structured description, classify the incident by type (e.g., broken traffic light, pothole)
and assess its severity. The application also offers a personal dashboard where users can monitor
the status of their reports (e.g., pending, in progress, resolved) and view a history of reported
issues. Incidents are displayed in both list and map formats, providing flexible and intuitive
visualization options.

The desktop interface is designed for municipal organization operators and functions as a digital
control center for managing citizen reports. It provides a customizable dashboard where incidents
are grouped by category, status and other filters defined by the organization. Operators can access
detailed records for each incident, including all associated occurrences, through a dedicated detail
page. The system supports three visualization modes: the summary dashboard, the incident detail
view and a dynamic map interface. The map allows filtering by category and status, and includes
a heatmap visualization to identify areas with a high density of reports.

24

One of the major challenges faced by municipal authorities is the influx of redundant reports
about the same issue, which consumes valuable time and resources. To address this, the platform
incorporates functionality to automatically group related occurrences into a single incident. This is
achieved through a combination of geospatial indexing, using the H3 framework (see Section 2.2.7)
and AI-based similarity analysis to determine whether multiple reports refer to the same underlying
problem or to distinct issues occurring in close proximity.

Together, these components form a cohesive and scalable solution for participatory urban
governance. The platform enhances communication between citizens and public services, while
supporting data-driven strategies for infrastructure maintenance and urban policy development.

3.3 User-Centered Design

The development of the proposed platform followed a user-centered design approach to
ensure that both technical and usability requirements are aligned with the needs of its primary
stakeholders. This section presents the key user personas identified during the design phase,
outlines representative scenarios and narratives based on their expected interactions with the
system and concludes with the specific use cases that guided functional development.

3.3.1 Personas

Two primary personas were defined to guide the design process: the citizen reporter and
the municipal control operator. These personas reflect the system’s core interaction model, which
relies on the submission and management of urban incident reports.

The first persona, João, is a 35-year-old local resident who frequently commutes within
the city, as shown in Figure 3.1. As a concerned citizen, he is motivated to contribute to urban
safety by reporting issues such as potholes, accidents, or vandalism. João has previously found
existing municipal services to be unresponsive, slow and impractical when it comes to reporting
problems. Furthermore, he lacks any reliable means to track the resolution status of submitted
incidents. His expectations from the platform are clear: a user-friendly mobile application that
allows him to quickly submit reports, receive confirmation of their submission and monitor their
resolution status. João also values access to a personal history of his reports, which enhances his
sense of accountability and engagement.

Figure 3.1: Persona: João - Citizen Reporter.

The second persona, Ana, is a 45-year-old employee in the city’s urban management
department, as shown in Figure 3.2. Her primary responsibility is to monitor reported inci-
dents and coordinate the appropriate response from municipal service teams. Ana faces several

25

operational challenges, including a high volume of duplicate and unstructured reports, difficulty
prioritizing incidents based on urgency or category and limited visibility into real-time updates.
Her primary motivation is to have a centralized dashboard that provides a comprehensive overview
of incidents across the city. She values automated support for clustering similar reports and visu-
alizations such as maps and statistics to enhance decision-making.

Figure 3.2: Persona: Ana - City Control Operator.

3.3.2 Scenarios

To validate the system’s design and its alignment with real-world user needs, several represen-
tative user scenarios were developed based on the identified personas. These scenarios illustrate
typical interactions that occur between end-users and the platform, highlighting both functional
capabilities and user-centric outcomes.

Scenario 1: João Reports a Pothole On-Spot. While commuting to work, João notices a
large pothole on the road. He opens the municipal mobile application, takes a photo of the pothole
and confirms the detected location. During the location confirmation, the integrated AI module
automatically generates a brief and contextually accurate description (e.g., ”Large pothole on Main
Street”) and categorizes the problem based on its type. João reviews the generated information
and submits the report. The entire process takes less than 30 seconds, leaving João satisfied with
the ease and efficiency of contributing to urban improvement.

Actions: Opens the municipal app; takes a photo; confirms location; reviews AI-generated
description and category; submits the report.

Scenario 2: João Reports a Broken Streetlight from Home (Delayed Report). João
observes a broken streetlight on his street while returning home in the evening. Due to poor
network connectivity at the location or a need to report later, he does not submit the report
immediately. Upon arriving home and gaining a stable internet connection, João opens the FixAI
mobile application to report the issue. He selects the option to choose a photo from gallery.
He uploads the photo of the broken streetlight he took earlier and manually specifies the exact
location. The integrated AI module analyzes the image and location to generate a descriptive
text and a precise category (e.g., ”Broken Streetlight at Elm Street, near intersection with Oak
Avenue,” categorized as ”Electrical Fault”). João verifies the details and submits the report.

Actions: Observes an issue; takes a photo at the time of observation (offline); opens the app
later at home; uploads the photo; manually specifies or confirms the location; reviews AI-generated

26

description and category; submits the report.

Scenario 3: João Checks the Status of a Previously Reported Incident. On his way
home, João recalls having reported a broken streetlight in his neighborhood two weeks earlier.
To follow up, he opens the mobile application and navigates to the “My Reports” section. The
interface provides two modes of visualization: a list of all previously submitted reports along
with their current statuses, “Pending”, “In Progress” or “Resolved”, and a map view displaying
all incidents with geospatial markers. João quickly locates the streetlight incident and sees that
its status has been updated to “In Progress”, indicating that the municipal services are actively
addressing the issue.

Actions: Opens the app; navigates to “My Reports”; locates the incident; checks the current
status.

Scenario 4: Ana Reviews Daily Incident Reports. Midway through her workday, Ana logs
into the city control center’s desktop-based platform to review all new incident reports submitted
that day. The dashboard presents incidents grouped by type, resolution status and severity. Upon
filtering the reports, she notices a series of unresolved pothole incidents across various city districts.
Based on this overview, Ana allocates the appropriate municipal teams to the affected areas and
updates the incident statuses to “In Progress”.

Actions: Logs into the control center platform; filters incidents by category and status;
identifies unresolved cases; delegates tasks to appropriate teams; updates incident statuses.

Scenario 5: Ana Manages a Surge of Reports Following a Storm. After a severe storm,
Ana monitors the city’s incident management platform to assess urban damage. The dashboard,
which aggregates real-time citizen reports, indicates over 200 newly submitted cases, including
flooding, fallen trees, damaged sidewalks and traffic signal malfunctions. She contacts municipal
repair crews to address the most critical situations first and updates the status of the selected
reports to “In Progress”.

Actions: Accesses the incident management dashboard; reviews citizen reports; dispatches
repair crews; updates incident statuses.

3.3.3 User Stories

Building upon the previously defined personas and interaction scenarios, a structured set of
user stories was derived to inform the functional requirements and guide the development of the
FixAI platform. These user stories reflect the core expectations and objectives of the primary
stakeholders, citizens and municipal control operators, and are intended to ensure that the system
supports both usability and operational efficiency.

From the citizen’s perspective, the platform must facilitate fast and intuitive reporting of
urban issues such as potholes, fallen trees, or vandalism. Users should be able to submit a report
through the mobile application with minimal effort. The integrated AI component automat-
ically analyzes the uploaded photo to generate a suggested description and categorize the
issue, enabling users to complete their report submission in less than one minute. Furthermore,
citizens expect access to a history of previously submitted reports and the ability to monitor the
resolution status of each incident. Real-time updates indicating progress, such as transitions from
“Pending” to “In Progress” or “Resolved”, are essential for fostering user engagement.

From the perspective of municipal control operators, the system must provide a centralized
dashboard that organizes all reported incidents by category and resolution status. Operators re-
quire filtering capabilities to manage incidents effectively, including sorting by status (e.g., pend-
ing, in progress, resolved) or category (e.g., infrastructure, urban drainage, traffic). The ability
to access all related reports and images for a specific location is critical to assess problems com-
prehensively, reduce redundancies and streamline resource allocation. Additionally, a live map

27

Figure 3.3: Use Case Model of the FixAI System.

visualization of the city should support rapid identification of affected areas and improve coordi-
nation of response teams. Operators must also be able to update the status of incidents in real
time, ensuring that citizens are promptly informed of ongoing resolutions.

3.3.4 Identified Use Cases

The use case analysis of the FixAI system was conducted to formally capture the functional
requirements associated with each user role. This analysis resulted in a structured model com-
prising two main functional domains: the mobile application and the desktop application.
These domains reflect the responsibilities of the system’s primary users, citizens and city control
operators.

Figure 3.3 illustrates the complete use case model, depicting the relationships between users
and the functionalities they interact with in each application package.

As illustrated, citizens interact exclusively with the mobile application to report and mon-
itor incidents, while city control operators manage and respond to these reports through the
desktop application. The following subsections describe the use cases associated with each
platform.

3.3.4.1 Mobile Application

The mobile application use case diagram, shown in Figure 3.4, outlines the core functionalities
available to the citizen user. Each use case reflects a key interaction within the application,
designed to facilitate quick and effective participation in urban maintenance.

Report an Occurrence. Enables citizens to submit incident reports via the smartphone’s
camera and internet connection. Upon identifying an issue, the user captures an image, and

28

Figure 3.4: Use Case Diagram – Mobile Application.

the system generates a description and category using AI. The user may review or modify this
information before final submission.

View Occurrences Statistics. On launching the application, users are presented with sum-
mary statistics showing the total number of reports, along with counts for each status: pending,
in progress, and resolved. These statistics are refreshed only when the application is accessed with
an active internet connection.

View Occurrences Map. Allows users to visualize previously reported issues on an interactive
map. Each marker corresponds to a report, which users can select to access detailed information.

View Occurrences List. Provides a list-based alternative to the map view. Citizens can browse
their past reports chronologically, with each entry linking to a detail page. Filtering by status
(pending, in progress, resolved) is also supported to enhance usability.

View Occurrence Details. Displays comprehensive information about a specific report, in-
cluding its category, submission date, current status, geolocation and description.

3.3.4.2 Desktop Application

The desktop application use case diagram, shown in Figure 3.5, captures the activities avail-
able to city control operators. These use cases are focused on managing incoming reports and
monitoring incident resolution.

View Incidents Statistics. Provides a comprehensive dashboard summarizing the total num-
ber of reported incidents, categorized by type and resolution status (e.g., pending, in progress,
resolved). This overview enables operators to monitor the overall state of urban issues across

29

Figure 3.5: Use Case Diagram - Desktop Application.

the city. The statistics are updated each time the dashboard is accessed with an active internet
connection.

View Incidents Map. Provides a geographic visualization of reported incidents. Operators
can select incidents directly on the map and apply filters by category to refine the display.

View Incident Details. Grants access to the full history and context of a specific incident,
including all associated occurrences. Each occurrence entry includes the submission date, descrip-
tion and relevant metadata. Operators can also view the overall category and current status of
the incident.

Update Incident Status. Allows operators to update the status of incidents based on their
current resolution stage, transitioning reports from pending to in progress and ultimately to re-
solved.

3.4 Non-Functional Requirements

In addition to the functional requirements outlined in the user stories, the system must meet
several non-functional requirements to ensure reliability, performance, security and usability.
These requirements define the quality attributes of the platform and provide guidelines for its
implementation.

Performance. The system requires an LLM Model to generate an incident description and
category within 10 seconds. In cases of model failure, users must be able to manually input the
description and select a category.

30

Scalability. The application must scale horizontally through the addition of instances, rather
than relying on hardware upgrades. Database queries are to be optimized for efficient handling
of increasing data indexation.

Maintainability and Extensibility. The codebase will adhere to clean architecture princi-
ples to facilitate independent updates and a maintainable environment. The system’s design must
allow for easy integration of new AI models and features with minimal rework. Components
should be loosely coupled and highly cohesive, enabling easier modifications and integration
with multiple systems, such as a Digital Twin.

Reliability and Availability. Incident reports and status updates must be synchronized in
real-time across both the mobile app and desktop platform.

Security and Privacy. Communication between the mobile app, desktop platform and
backend services must be encrypted using HTTPS with TLS protocols.

Usability. Both the mobile app and desktop platform require a user-friendly interface
that is intuitive for citizens and city control operators. The mobile app must be compatible with
Android and iOS.

Accessibility. The platform should support multiple languages to accommodate diverse pop-
ulations. Font size must be easily adjustable without disrupting the UI layout or design.

31

Chapter 4

Architecture Notebook

4.1 Architecture Overview

This section provides a comprehensive overview of the architecture of the system, describing its
core structural components and the principles that guided their composition. The architecture has
been designed following modern conventions, with a focus on scalability, maintainability, and
modular responsibility separation. It reflects a service-oriented paradigm and adheres to
Kubernetes deployment patterns, ensuring robustness under dynamic operational loads and ex-
tensibility across diverse use cases. The architecture is loosely coupled and event-driven, relying
heavily on asynchronous communication and stateless services to promote horizontal scalability
and fault isolation.

The following subsections elaborate on the architecture through a conceptual diagram, a de-
ployment perspective, and the data access strategy, providing a high-level understanding of how
our entire application works.

4.1.1 Architecture Diagram

The architecture of the system shown in Figure 4.1 adopts a modular layered design de-
ployed on a Kubernetes infrastructure. The design is characterized by a clear separation of
concerns between functional components, stateless service orchestration, and event-driven exten-
sions, which together enable the system to operate efficiently under varying loads while remaining
adaptable to future functional evolution. At a high level, the application is structured into three

Kubernetes Cluster

City Operator

Citizen

Producer
Record

External Services

LLM Consumer

Clustering

deploy

LLM Consumer

Description

deploy

LLM Consumer

Check Resolved
Incidents

deploy

Main Storage File Storage

Cache Storage

Kafka Broker

Kafka Partitions

Kafka Topics

Rep
lica

tio
n

Kubernetes Pod
deploy

API Layer

Auth Controller

Websocket

User Controller

Occurrence Controller

Incident Controller

Videos Controller

Organization Controller

Business Logic Layer

LLM Producer

Occurrence Service

Photos Service

Videos Service

User Service

Organization Service

Mobile Application

Desktop Application

Stateless Kubernetes Pods

Stateful Kubernetes Pods

Photos Controller

Incident Service

Auth Service

Figure 4.1: Architecture Diagram with Kubernetes Pods.

32

main domains: the external interaction layer composed of frontend clients and edge-data de-
vices, the core backend service hosted within a stateless Kubernetes pod, and an asynchronous
event-driven pipeline used for LLM tasks. These components are unified within a container-
ized deployment model that facilitates elastic scalability, isolation of failure domains, and ease of
operational management.

The external interaction layer comprises multiple entry points to the system. End users,
categorized as citizens or city operators, interact through dedicated interfaces, mobile and desktop
applications, respectively and, additionally, the system interfaces with edge computing devices,
such as autonomous vehicles equipped with vision capabilities, which are capable of identifying
solved incidents directly to the backend. All of these clients and devices communicate via a
centralized RESTful API exposed through the Kubernetes cluster into the backend pod.

The backend itself follows a strict layered architecture and is deployed as a stateless Kuber-
netes pod. Internally, the backend is divided into an API Layer and a Business Logic Layer.
The API Layer is responsible for handling all external requests, including user authentication, in-
cident and report management, and communication with clients via web sockets. Each controller
in this layer delegates execution to corresponding services in the Business Logic Layer, where
domain-specific operations are executed and data is retrieved or persisted. This design adheres
to the principle of responsibility separation and supports easy extension of functionality over
time.

The Business Logic Layer maintains access to the system’s persistent data sources and in-
tegrates with external service providers. Core data entities such as users, incidents, and orga-
nizational information are stored in a high-availability distributed database optimized for
high write throughput. Media artifacts, including photos and videos, are offloaded to a dedicated
object storage system and, additionally, the backend makes use of an in-memory data store for
ephemeral caching, fast key-value access, and pub/sub coordination. Certain services also interact
with third-party providers for functionality such as email notifications.

In order to support asynchronous processing and extend system responsiveness, the architecture
includes an event-driven pipeline based on message brokering principles. Within the Business
Logic Layer, specific operations trigger the publication of messages to a distributed message broker
where these messages are organised by topic and correspond to distinct job types, such as checking
if an incident is resolved, clustering reports or describing incidents using natural language. These
topics are consumed by independently deployed stateless processing components, referred to as
LLM Consumers, which are capable of scaling horizontally depending on computational demand.
Each consumer retrieves messages from its designated topic, constructs semantic prompts, and
delegates the final processing to a cloud-based LLM service. The results of these operations
are subsequently returned to the user asynchronously, completing the event cycle without requiring
client-side polling.

Persistent data in the system is managed by Kubernetes StatefulSets, which guarantee stable
network identities and volume persistence for the storage components. The architecture distin-
guishes between main storage, used for structured data; file storage, used for handling binary
media; and cache storage, which supports high-speed data access patterns and transient coordi-
nation logic. All of these systems are hosted within the same Kubernetes cluster, ensuring efficient
inter-service communication and centralized observability.

Overall, this architectural design prioritizes resilience, modularity, and scalability. The
core backend services maintain a monolithic deployment structure internally, but their modular
decomposition and reliance on external asynchronous processors allow the system to benefit from
the scaling properties commonly associated with microservice-based architectures. By combining a
modular monolith with asynchronous, independently scalable processing units, the system achieves
a hybrid architecture capable of supporting a wide range of operational scenarios with minimal
latency and robust fault isolation.

33

HTTPS

WebSocket

443

ngrok edge

MacStudio VM

Mobile App Tunnel

ngrok client

Kubernetes Cluster

Master01 VM

Traefik

/api/v1

BackendFile Storage

Zookeeper

NFS Server

Worker01 VM

Main Storage Cache Storage

LLM-Consumer
Clustering

LLM-Consumer
Description

LLM-Consumer
Check Incidents

8000

control
plane

Figure 4.2: Deployment Diagram with Infrastructure.

34

4.1.2 Deployment Diagram

The deployment of the system, as illustrated in Figure 4.2, is realised through a containerized
infrastructure orchestrated by a Kubernetes cluster composed of two virtual machines: one
configured as the control plane (Master01) and the other as a worker node (Worker01). Both
nodes operate within an Ubuntu environment and are responsible for hosting and managing all
components required by the application, including backend services, message brokers, storage, and
event-processing units.

The user-facing applications, both the mobile client and the desktop operator interface, interact
with the system through a secure HTTPS connection where incoming traffic is managed by an
ingress controller, which routes external requests to the internal API services. This controller
forwards traffic to the backend pod over its exposed internal service port 8000. This configuration
ensures a clean separation between external access and internal service orchestration while adhering
to standard Kubernetes ingress routing principles as discussed in Section 2.2.5.

Each pod within the cluster is exposed internally through a ClusterIP service, which ab-
stracts individual pod identities and performs internal load balancing. This approach facilitates
horizontal scaling, as new replicas of stateless services can be deployed without requiring man-
ual updates to pod-specific configurations. Components that require persistent identity and data
storage, such as Cassandra, Kafka, and Zookeeper, are deployed as StatefulSets and are accom-
panied by headless services to support direct pod discovery and coordination so their internal
distribution is possible. These distributed components form the backbone of the system’s stor-
age and event-driven subsystems, enabling both high availability and consistency under dynamic
workloads.

For persistent storage, the system uses a centralized NFS server hosted in the Master01
node combined with dynamically provisioned Persistent Volumes via Kubernetes StorageClasses.
This setup ensures that each pod requiring persistence is assigned a dedicated volume, supporting
fault-tolerant storage allocation and replication. Data associated with structured storage
(Cassandra), media objects (MinIO), and ephemeral cache (Redis) is thereby maintained in a
resilient and scalable fashion within the same cluster infrastructure.

Special deployment considerations were necessary for the mobile application due to its un-
compiled state, which precludes conventional distribution through app stores. Instead, the app
remains in development mode and is accessed using Expo Go via QR code. To make this pos-
sible in a persistent and publicly accessible manner, the application is hosted on a MacStudio
virtual machine and, since this VM resides within a private network and is not exposed directly
to the internet, a secure tunnel is established using ngrok. This tunneling solution allows the
Expo Go client to connect externally, ensuring reliable access to the app without requiring local
infrastructure to remain online at all times.

This deployment strategy balances performance, isolation, and operational simplicity.
Stateless components benefit from standard Kubernetes scaling and failover mechanisms, while
stateful services are maintained with data integrity guarantees provided by persistent volumes
and headless services. As explained in Section 2.2.5, all these components and patterns allow
the system to remain robust under increasing load, while minimizing the operational complexity
commonly associated with distributed architectures.

4.1.3 Data Access Diagram

The data access model of the system, depicted in Figure 4.3, outlines the interaction patterns
between components across the internal and external domains, emphasizing access privileges,
communication flows, and trust boundaries. The system is logically divided into two domains:
the external domain, comprising end users and edge data sensors, and the internal domain, which
hosts all backend components, persistent storage, and processing units.

All external communication is funneled through the API layer, which acts as the secure
gateway to the internal domain. This layer is exposed over HTTPS and implements role-based
access control (RBAC) enforced via JWT tokens. It receives requests from client applications

35

Figure 4.3: Data Access Diagram.

and devices, including mobile users, operators from the desktop application, and sensor-equipped
platforms such as autonomous vehicles equipped with cameras. These clients interact exclusively
with the API layer and do not have direct access to any internal services. The API layer is
responsible for performing access validation and then mediating data operations across the internal
storage systems. It can perform read and write operations on the main storage and file storage
layers, and selectively interact with the cache storage. Additionally, it communicates with third-
party services such as SendGrid for outbound messaging, using its secure API key explicitly scoped
to this purpose.

LLM consumers operate asynchronously in the internal domain and have broader access to the
internal data infrastructure. These stateless services interact with the main storage in both
read and write modes, perform writes to the cache, and have read access to the object storage
containing photos and videos. LLM consumers also interact directly with the Gemini cloud-based
model through secure HTTPS communication with a dedicated secret API key, handling prompt
generation and response evaluation autonomously.

The file storage system maintains access controls for multimedia data, allowing only authenti-
cated read operations from the LLM consumers, while granting full access to the backend service.
Similarly, the cache and structured databases are protected through service-scoped secrets that
control access privileges based on component identity and operational role.

This diagram captures the security-oriented design of the system by showing clear domain
isolation, minimal privilege assignments, and scoped secrets for inter-service communication. By
limiting direct exposure and centralizing access mediation through the API layer, the architecture
enforces strong data governance while supporting high-throughput data exchange between trusted
services.

4.2 Technology Stack

This section outlines the primary technologies employed in the development and operation of
the system, covering programming languages, architectural frameworks, infrastructure platforms,
and service integrations. The choice of each technology was guided by factors such as scalability,
compatibility with containerized environments, support for asynchronous processing, and ease of
integration with modern DevOps pipelines. The overall system is composed of a hybrid deployment

36

Table 4.1: Technology Stack Overview.

Category Technology

Backend Development Python (FastAPI)

Frontend Clients ReactNative (Mobile), Electron with React (Desktop)

Container Orchestration Kubernetes (Ubuntu VM deployment)

Ingress Controller Traefik

Structured Storage Apache Cassandra

Object Storage MinIO

Cache and Pub/Sub Redis

Message Broker Apache Kafka

LLM Integration Google Gemini API

LLM Consumers Python-based, deployed as stateless pods

Authentication JSON Web Tokens (JWT)

Email Service SendGrid

Persistent Volumes NFS + Kubernetes StorageClasses

combining stateless service pods and stateful distributed components, as detailed in Sections 4.1
and 4.1.2. Table 4.1 summarizes the main technologies categorized by their functional roles in the
architecture.

37

Chapter 5

Implementation

5.1 Frontend Applications

This section presents the two main frontend interfaces developed for the FixAI platform: the
mobile application for citizens and the desktop application for municipal operators. We describe
the design decisions, implementation strategies, and tools used in both applications, highlighting
the technologies and libraries that enabled efficient development and user experience. Special
attention is given to the different requirements and interaction models of each platform, as well
as the rationale behind choosing a desktop-native approach over a purely web-based solution for
the operator interface.

5.1.1 Mobile Application

The mobile application was developed using React Native in conjunction with Expo Go, provid-
ing a cross-platform development environment. Expo Go significantly streamlined the development
workflow, offering tools for fast prototyping, easy device testing, and compatibility across both
Android and iOS platforms. React Native was chosen over alternatives such as Flutter due to
the team’s familiarity with JavaScript and React, its large ecosystem of libraries, and the reduced
learning curve, which allowed for more rapid development.

The application includes several key screens:

• Home Page: Displays user-specific statistics, such as the number of pending, in-progress,
and resolved incident reports.

• Report Page: Allows users to capture a photo and submit a structured issue report.

• Map Page: Shows all current reports (pending and in-progress) using real-time geolocation.

• List Page: Displays a filtered list of all submitted issues by status.

• Account Management: Includes authentication, language preferences, and user profile
options.

Libraries. Camera functionality was implemented using the expo-camera library, while user ge-
olocation was handled with expo-location, which periodically updates the user’s position through
a React context. The incident map view was created using react-native-maps, offering a per-
formant and customizable mapping component. For backend integration, the app uses axios to
perform HTTPS requests to the FixAI server.

38

(a) Home Page. (b) Map Page. (c) Camera Page. (d) Report Page.

Figure 5.1: Mobile Application – Home, Map, Camera and Report pages.

(a) List Page. (b) Details Page. (c) Settings Page. (d) Account Page.

Figure 5.2: Mobile Application – List, Details, Settings and Account pages.

39

Modularity and Code Organization. The project follows a modular architecture to promote
code reusability and maintainability. Common UI elements such as buttons, form inputs, and
cards were developed as reusable components. Logical operations and cross-cutting utilities were
encapsulated in hooks (e.g., custom hooks for geolocation or permissions) and utility functions.
Constants such as icons, fonts, image resources, and supported languages are centralized in dedi-
cated files, ensuring consistent usage throughout the app and simplifying updates. This structure
allows for rapid feature extension and easier testing.

Backend Integration. All backend communication is centralized in a dedicated application
module (API Consumer), which encapsulates the logic for interacting with the FixAI REST API.
This abstraction simplifies HTTPS request logic and promotes consistency in error handling. A
secondary file exports the API consumer functions and associated DTOs, allowing for type-safe
and organized imports across the codebase. This structure enforces separation of concerns between
UI and data-fetching logic.

State Management. The application relies heavily on React’s Context API for global state
management. Several dedicated context providers were implemented to manage cross-cutting
concerns such as authentication, language settings, and geolocation. This modular structure
improved code maintainability and reusability across components.

Loading State Management. To provide feedback to users during asynchronous operations
(e.g., API requests), a global loading mechanism was implemented using a custom LoadingContext.
Initially, both the reading and writing logic were handled in a single context. However, this led
to performance issues: every time the loading state changed (e.g., setLoading(true)), all com-
ponents consuming the context were re-rendered, even those not directly related to the loading
operation.

To solve this, the logic was split into two separate contexts: one for reading (useLoading) and
one for writing (useSetLoading). This separation prevents unnecessary re-renders of components
that only require one side of the loading state, improving performance and maintaining a responsive
user interface. Internally, the loading state is managed using React’s useState, and a spinner is
conditionally rendered in the UI whenever the state is true.

const isLoading = useLoading ();

const setLoading = useSetLoading ();

setLoading(true); // before API call

// perform action

setLoading(false); // after completion

Figure 5.3: Frontend Loading Context for API calls.

This lightweight but effective approach avoids flickers and preserves component isolation, re-
sulting in a better overall user experience.

Internationalization. FixAI provides multilingual support for Portuguese, English, and Chi-
nese. To implement this feature, a custom TranslationContext was created using React’s context
API. This context handles language selection, translation lookup, and caching of user preferences.

All translatable strings are defined in language-specific JSON files (e.g., en.json, pt.json,
zh.json), each containing key-value pairs where keys are consistent across all files and values are
the translated strings. As we can see for Portuguese translations in Figure 5.4.

40

{

"occurrences ": "Occurrencias",

"report_issue ": Reportar um Incidente",

(...)

}

Figure 5.4: Portuguese Translations Example (pt.json).

The TranslationContext provides a translate(key) function that can be used throughout
the app to fetch the correct text dynamically. As representend in Figure 5.5.

The language is initially set based on the device’s locale, using JavaScript’s navigator.language
or Intl.DateTimeFormat().resolvedOptions().locale. If the device’s language is not sup-
ported, the system defaults to English. Users can also manually change the language, and their
selection is stored using @react-native-async-storage/async-storage, so it persists across
sessions.

Example flow:

1. On app startup, the system tries to load the previously selected language from AsyncStorage.

2. If none is found, it falls back to the device’s locale, provided it matches a supported language.

3. The corresponding JSON file is loaded into memory, based on the selected language.

4. The translate function accesses the current language’s object and returns the appropriate
string for each key.

For example, if the current language is set to Portuguese, a call to:

translate(’occurrences ’)

Figure 5.5: Translations Usage Example.

will return the value associated with the key in pt.json, such as ”Occurrencias”. This archi-
tecture enables fully dynamic and reactive UI translation without the need to reload components.
It also makes the app easily extendable to new languages: adding support for another language
only requires creating a new JSON file with the appropriate translations and adding it to the
resource map. The consistent use of translate(key) across the codebase guarantees centralized
control over language behavior.

5.1.2 Desktop Application

The desktop application was developed using ReactJS together with Electron, enabling the
same codebase used for the web to run as a native desktop application. The integration of Electron
required only a lightweight wrapper around the React project, making the transition to desktop
seamless and efficient.

Dashboard and Incident Management. The main screen of the application presents a dash-
board composed of several key components:

• A card-based overview of incident categories.

• A table displaying incidents filtered by category, status, and date.

• An interactive map for geolocating incidents, with optional heatmap or marker visualization.

41

(a) English Translation. (b) Portuguese Translation.

Figure 5.6: Mobile Application – Different Languages in Home Page.

• A detail page with a carousel containing all occurrences of an incident (i.e., multiple photos
and descriptions referring to the same issue).

• A dedicated section for PIXKIT video submissions, which act as suggestions that a problem
may have been resolved and are pending operator validation.

Map and Heatmap Integration. The map was implemented using the react-leaflet li-
brary, which provides an efficient and interactive mapping experience within React applications.
Depending on the selected view mode, the map either displays individual markers for each incident
or overlays a heatmap to represent the density of incidents.

The heatmap is rendered through a custom component that leverages the leaflet.heat plu-
gin. This plugin enables the transformation of geographical coordinates into a colored gradient,
allowing users to quickly identify areas with a high concentration of incidents. The heat intensity
is determined by the number of incidents in a given area, and the color gradient ranges from blue
(low density) to red (high density).

This feature greatly enhances the operator’s ability to assess the distribution of incidents across
regions, prioritize responses, and focus on emerging hotspots more effectively.

Language Support. Internationalization is handled through a custom TranslationContext,
exactly as in the mobile application. The translation system loads static JSON resource files
(e.g., pt.json, en.json) and makes the translation function available globally. Although only
Portuguese and English are currently supported, adding new languages is as simple as creating
a new key-value JSON file. This approach ensures consistency in multilingual support across all
platforms.

API Integration. As with the mobile application, all server communication is handled through
the axios HTTPS client. The desktop version benefits from the same abstraction and configura-
tion logic, promoting consistency and reducing duplication across platforms.

42

Figure 5.7: Desktop Application Dashboard Page.

(a) Heatmap Visualization. (b) Map With Markers.

Figure 5.8: FixAI Desktop – Desktop Application Incidents Map Page.

(a) Incident Details Page. (b) Incident Already Solved Detected.

Figure 5.9: FixAI Desktop – Desktop Application Incident Details Page.

43

Conclusion. The desktop application leverages the React ecosystem to provide a responsive,
multi-functional interface for operators. Thanks to Electron, it runs natively across platforms
with minimal setup. Features like multilingual support, advanced map visualization, and robust
authentication make the application both powerful and user-friendly. Moreover, code reusability
and modularity across mobile and desktop significantly improved development efficiency.

5.1.2.1 Desktop App vs. Web App

Web vs Desktop Application. The application was originally designed and implemented as
a web-based platform, using technologies such as ReactJS and Axios for frontend logic and API
communication. However, after further consideration and based on user feedback, we realized that
the primary users of our system, the operators within organizations, would benefit more from a
dedicated desktop application.

To address this, we decided to wrap our entire application using Electron, a framework that
enables the packaging of web applications as cross-platform desktop applications (Windows, ma-
cOS, and Linux). One of the major advantages of this approach was that it allowed us to reuse our
existing web codebase without the need to rewrite the application in native technologies. Several
key factors motivated this migration:

• Ease of Access and Use: A desktop app removes the dependency on a web browser,
enabling users to launch the application directly from their system. This is particularly
practical for operators who use the system on a daily basis.

• Better Operating System Integration: Electron applications can take advantage of
native OS features such as window management, native notifications, local storage, and
custom menus, offering a more seamless user experience.

• Unified User Experience: By using Electron, we ensured a consistent look and behavior
across platforms, avoiding browser-specific quirks and improving interface reliability.

• Partial Offline Support: Although the application still relies on a remote API, features
like local caching and persistent state allow for smoother performance in environments with
unstable connectivity.

This transition to a desktop environment did not imply abandoning the web version entirely.
Instead, it was a strategic decision to better align the application with its most relevant use case.
Thanks to our modular architecture, both the web and desktop versions can be maintained with
minimal overhead, ensuring flexibility and adaptability for different usage contexts.

5.2 Backend Services

The backend system of the FixAI platform is designed to provide scalable and efficient services
that support both citizen-facing mobile applications and operator-facing desktop dashboards. It
encompasses the core business logic, data persistence and asynchronous processing capabilities
necessary for managing urban infrastructure incidents, which will be detailed in this section.

5.2.1 API Design and Endpoints

The backend is developed using FastAPI, a modern, fast (high-performance) web framework
for building APIs with Python, see more about it in Section 2.2.2. Its efficiency and inherent
support for asynchronous operations was a primary factor in its selection, ensuring the platform’s
scalability and responsiveness, critical for handling concurrent requests from both mobile and
desktop clients.

The core API provides interactive documentation via Swagger UI at /api/v1/docs. This setup
facilitates easy exploration and understanding of the API’s capabilities for developers.

44

5.2.1.1 API Layer Architecture

These backend services are structured in a layered architecture to promote modularity, sepa-
ration of concerns and maintainability. This architecture ensures that changes in one layer have
minimal impact on others, facilitating development and scaling. Figure 5.10 describes the flow of
a request.

Figure 5.10: Full-Stack representation - Request Flow.

The primary layers involved in handling an API request are as follows:

• ReactJS Desktop App: This represents the client-side application specifically for desktop
users, initiating requests to the backend.

• React Native Mobile App: This represents the client-side application specifically for
mobile users, also initiating requests to the backend.

• API Consumer: This layer in both the desktop and mobile frontends is responsible for
making HTTPS requests (GET, POST, PUT, PATCH, DELETE), using Axios and managing Web-
Socket connections to the backend API. It acts as an intermediary, abstracting the raw API
calls from the main frontend logic.

• Controller: In the backend, the Controller (implemented using FastAPI Routers) is the
entry point for incoming API requests. It receives requests from the API Consumer, per-
forms initial validation and delegates the business logic to the Service layer. Controllers are
responsible for mapping URLs to specific functions and handling HTTPS methods.

• Service: The Service layer encapsulates the core business logic of the application. It receives
data from the Controller, orchestrates operations across multiple components (e.g., interact-
ing with the database, calling external services) and applies application-specific rules. This
separation ensures that business logic is centralized and reusable.

• DAO (Data Access Object): The DAO layer is responsible for abstracting the data
persistence details. It provides a clean API for the Service layer to interact with the database
without needing to know the underlying database technology. Each DAOmanages operations
for a specific entity (e.g., UserDAO, IncidentDAO).

This layered approach ensures a clear flow of data and responsibility.

5.2.1.2 Middleware and Cross-Origin Resource Sharing (CORS)

To enhance API robustness and security, two middleware components are implemented:

• Request Logging Middleware: A custom HTTPS middleware is applied to log every
incoming request’s method and URL, along with the corresponding response’s status code.
This provides essential operational insights for monitoring and debugging.

• CORS Middleware: This middleware is crucial for enabling secure communication be-
tween the backend and its frontend applications, which might be hosted on different origins,
ensuring that the mobile and desktop applications can interact with the API without en-
countering cross-origin security issues.

45

5.2.1.3 API Modularization and Routing

The API is organized into logical modules using FastAPI’s APIRouter to maintain a clean,
maintainable and scalable codebase. Each router handles a specific domain of the application’s
functionality. All API endpoints are prefixed with /api/v1/, for clear versioning. The routers
described below are integrated into the main FastAPI application.

• users router: Manages all user-related operations.

• occurrences router: Handles the submission and retrieval of incident occurrences.

• incidents router: Deals with incident clusters, their status updates and associated data.

• auth router: Governs user authentication, registration and session management.

• organizations router: Provides endpoints for organization-specific data, such as cate-
gories.

• photos router: Facilitates the upload and retrieval of incident photos.

• videos router: Manages the upload and retrieval of incident videos.

• ws router: Establishes WebSocket connections for real-time data streaming.

5.2.1.4 Key API Endpoints and Functionalities

The following outlines the primary functionalities exposed through the API endpoints.

Auth Endpoints (/api/v1/auth)

• POST /log-in: Authenticates a user or operator and issues access and refresh tokens.

• POST /sign-up: Initiates the user registration process, sending a confirmation email.

• POST /sign-out: Logs out the current user and clears authentication tokens or cookies.

• GET /users/me: Retrieves the profile details of the authenticated user.

• PUT /user-profile: Updates the authenticated user’s profile information.

• POST /update-code-confirmation: Confirms a code for critical account operations.

• POST /forgotten-password: Initiates a password reset process.

• POST /new-password: Sets a new password after a successful reset confirmation.

• DELETE /user-profile: Deletes the authenticated user’s account.

• POST /code-confirmation: Confirms an email code for new user registration

• POST /resend-code: Resends a confirmation code to a user’s email.

• GET /refresh-token: Refreshes access and refresh tokens.

46

Incident Endpoints (/api/v1/incidents)

• GET /map: Retrieves a list of unresolved incidents for display on a map, filterable by category.

• PATCH /{incident id}/status: Updates the status of a specific incident.

• GET /list-by-time: Lists incidents based on status, optional category and chronological
order.

• GET /{incident id}/occurrences: Retrieves all occurrences associated with a given inci-
dent.

• GET /{incident id}/suggestions: Fetches details suggestions for an incident.

• GET /check-nearby: Identifies incidents near given geographical coordinates and vehicle
orientation.

• POST /process-video: Processes a video from the autonomous vehicle to assess incident
resolution.

• GET /check-nearby/stats: Retrieves statistics related to nearby incident checks.

• GET /{incident id}: Provides detailed information about a specific incident.

• GET /{incident id}/videos: Retrieves videos associated with a specific incident.

Occurrence Endpoints (/api/v1/occurrences)

• GET /{occurrence id}: Fetches detailed information about a specific incident occurrence.

• POST /pre-submission: Allows for pre-processing of an occurrence (e.g., AI analysis of a
photo) before final submission.

• POST /: Submits a new incident occurrence.

Organization Endpoints (/api/v1/organizations)

• GET /categories: Retrieves the list of incident categories configured for the authenticated
operator’s organization.

Photo Endpoints (/api/v1/photos)

• GET /{photo id}: Downloads a specific photo associated with an incident occurrence.

User Endpoints (/api/v1/users)

• GET /stats: Provides statistics related to the current user’s reported occurrences.

• GET /occurrences-by-time: Lists a user’s occurrences based on status and time.

• GET /occurrences-not-resolved: Retrieves a user’s unresolved occurrences for map dis-
play.

• GET /email-notifications: Retrieves the user’s preference for email notifications.

• PATCH /email-notifications: Updates the user’s preference for email notifications.

Video Endpoints (/api/v1/videos)

• GET /{video id}: Retrieves an incident resolution assessment video from the autonomous
vehicle.

47

WebSocket Endpoints (/ws)

• GET /llm/{incident id}: Establishes a WebSocket connection to stream real-time updates
related to LLM processing for a specific incident, leveraging Redis Pub/Sub for asynchronous
messaging. This connection is established with the frontend mobile app, at the time the user
is submitting an ocurrence.

5.2.1.5 Error Handling

The API utilizes FastAPI’s HTTPException to signal various client-side and server-side errors,
providing clear status codes and detailed messages (e.g., 400 Bad Request for ”Email already
registered” or ”Incorrect password”, 403 Forbidden for unauthorized access to resources). This
ensures that the frontend applications can gracefully handle API responses and provide informative
feedback to users.

This comprehensive set of API endpoints, combined with robust authentication and modular
design, forms the backbone of the platform, enabling communication between the client applica-
tions and the backend services.

5.2.2 Database Integration

The FixAI platform relies on a robust and multifaceted database strategy to manage its diverse
data requirements, encompassing structured incident information, user data and unstructured
media files. This section details the integration of key database technologies, specifically Apache
Cassandra for scalable persistent storage of structured data and MinIO for efficient object storage
of photos and videos.

5.2.2.1 Column-Based (Cassandra)

For primary persistent storage of structured data, we employ Apache Cassandra, a highly
scalable, high-performance, distributed NoSQL database. A more detailed description of this tool
can be found in Section 2.2.3. Its column-based architecture and masterless design were chosen
to ensure high availability and linear scalability, vital for managing FixAI’s anticipated growth in
incident reporting and monitoring. A core design principle was to guarantee service scalability
from inception, supporting both individual users reporting numerous issues and the concurrent
activity of a large user base upon deployment. Cassandra’s selection was driven by its High
Write Throughput, crucial for rapidly ingesting occurrence submissions from mobile users and
autonomous systems. Its architecture is optimized for write-heavy workloads, ensuring efficient
data ingestion without performance degradation. Furthermore, Scalability and Availability
are paramount for an urban infrastructure platform, necessitating support for increasing users
and incidents without downtime. Cassandra’s distributed nature enables horizontal scaling and
continuous availability even with node failures. Its Always-On Architecture and peer-to-peer
distribution model provide fault tolerance, essential for a system operational 24/7.

Cassandra is utilized to store various critical data entities within the platform, forming the
backbone of the system’s operational data. This data is organized across three main keyspaces.
The Auth keyspace manages all authentication and user management data, including user and
operator credentials (e.g., email, hashed passwords, user/operator IDs, creation timestamps), along
with refresh tokens and confirmation codes. The H3 Index keyspace is dedicated to geospatial
data, storing information for both organizational regions and incident regions, crucial for location-
based functionalities. The central App Data keyspace holds the primary application data. This
includes user profiles, which store user-specific information such as name and email notification
preferences; organization data, encompassing details like organization name, language settings
and specific incident categories configured for each organization, along with counts for pending,
in-progress and resolved issues within those categories.

Core to this keyspace are the incident and occurrence records. Incident clusters store compre-
hensive information such as main category, description, centroid coordinates and aggregate counts

48

of occurrences. Individual incident reports, or occurrences, are detailed with geolocation, descrip-
tion, category and associated user and incident identifiers. These records are optimized for efficient
retrieval based on status, category and chronological order and occurrences are also indexed for
user-specific status tracking. Additionally, this keyspace manages the linking of incidents to their
constituent occurrences. Finally, it also stores metadata for media, specifically unique identifiers
referencing photos and videos that are stored as objects in MinIO.

The data models within Cassandra are primarily designed to optimize query performance
for specific access patterns identified through the API endpoints. This often necessitates data
duplication across multiple tables to achieve efficient retrieval without complex join operations,
a common trade-off in NoSQL databases for read optimization. For instance, data is structured to
efficiently support retrieval of incidents by status and category for the desktop dashboard’s listing
functionalities and to quickly fetch all occurrences related to a particular incident ID. Cassandra’s
strong support for composite primary keys allows for precise and efficient data retrieval based on
various query parameters, crucial for the system’s real-time monitoring and reporting capabilities.

5.2.2.2 Object Storage (MinIO)

For the storage of unstructured data objects such as photos and videos associated with in-
cidents, we utilize MinIO (2.2.4). The primary motivation for choosing MinIO was the clear
requirement for a robust object storage solution that offered a cost-effective and operationally sim-
pler alternative to cloud services like Amazon S3, while retaining a compatible interface. Given
that our platform did not require the complexity of a hierarchical structured filesystem, a flat
object storage model was highly suitable. MinIO provided the optimal solution, offering a high-
performance, S3-compatible API that significantly eases the potential future migration to Amazon
S3, should scalability demands exceed on-premises capabilities. This design ensures that large bi-
nary data, such as incident photos and videos submitted by citizens and autonomous vehicles, are
efficiently stored and retrieved, complementing Cassandra’s role in managing structured metadata.

5.2.3 H3 Integration for Spatial Operations

H3 integration, explained in Section 2.2.7, is the core of our solution for managing and analyzing
spatial data. Its efficiency in geographic indexing and finding neighboring areas is vital for how
well our application performs and grows. This section explains how the H3 system fits into our
overall design, from preparing organizational areas to handling incidents as they happen, making
sure we have a strong base for all our spatial tasks.

5.2.3.1 Organisation Indexing

Organisation indexing is key to connecting complex geographic areas with H3 identifiers. Our
system pre-calculates and saves all the hexagons that belong to a specific organization. We use
resolution 13, which provides a lot of detail. To save storage space and reduce data complexity,
we use a compaction method. This method lets us use smaller H3 resolutions in larger geographic
areas where less detail is acceptable. This cuts down on data size and makes queries faster. The
steps for organization indexing are shown in the Figure 5.11:

Pre-Process LayerQGIS Service

Generate Irregular
Polygon Objects

Load .csv Handle Nested
Polygons

optional

Store

Organizations

Processment Layer

Calculate Hexagons

Compactation

DB

Multiple

Organizations

Add

 Organizations

Administrator

Define Organization

Calculate
Border Points

Figure 5.11: Add Organization Workflow.

49

As depicted in Figure 5.11, the process begins with an administrator adding organisations.
This input then flows into a QGIS Service where the organisation’s geographic boundaries are
defined and border points are calculated. The data subsequently moves to a Pre-Process Layer,
which handles several operations: loading data (e.g., from CSV files), optionally managing nested
polygons and generating irregular polygon objects suitable for H3 processing. Finally, the Pro-
cessment Layer calculates the H3 hexagons for these polygons and compacts them to optimize
storage and query efficiency before the organisational data is stored in the database (DB).

This process ensures that organisations are accurately and efficiently represented in the H3
structure, allowing for quick and scalable spatial operations.

5.2.3.2 Incident Indexing

Incident indexing is essential for effectively managing and analyzing events in real-time. Each
incident is linked to an exact geographic spot (latitude, longitude), which is then mapped to an
H3 hexagon at resolution 13. This approach means several incidents can occur within the same
hexagon, making it easier to group and analyze them spatially. H3’s ability to easily find nearby
cells, thanks to its neighborhood traversal feature, as explained in Section 2.2.7.2, is fundamental
to this process. Also, because H3 uses projections based on an Icosahedron, Section 2.2.7.4, there’s
very little distortion in land areas. There are only minor issues in some sea zones, similar to any
Dymaxion-based projection. This gives us confidence that we can consistently group problems in
equally sized areas worldwide, for example, by location and other factors, which we’ll explore in
the next section.

5.2.4 Asynchronous Job Processing

This section delves into the intricate flow of urban occurrence reporting within the FixAI mobile
application. It specifically outlines the asynchronous job processing mechanisms that underpin
the platform, from leveraging multimodal Large Language Models (LLMs) for generating incident
descriptions, categories and severity, to intelligently clustering related reports and dynamically
updating incident information over time. An overarching view of this comprehensive process is
provided in Figure 5.12.

GenAI

GenAI

Clustering

H3 Index Smart City Operator

Merge Descriptions

Prediction

Same Incident
Two Occurrences

1st Occurrence

2nd Occurrence

Figure 5.12: Overall Incident Processing Flow in FixAI, showcasing H3 Indexing, AI-Driven Clas-
sification, Clustering Related Reports and Incident Updated Details Based on New Occurences.

Following this overview of the asynchronous processing pipeline, the subsequent explanations
will detail each major component, beginning with the incident reporting process by the citizen.

50

5.2.4.1 User Report Flow Description

The process, illustrated in Figure 5.13, outlines how a citizen initiates and completes an incident
report via the mobile application, encompassing frontend interaction, backend data processing
and AI-driven classification. An intermediate screen is specifically dedicated to precise location
confirmation, positioned between the camera input and the display of report details.

INSERT h3_index.incidents_regions

START LOADING...(few seconds)

Create temporary
incident_details with that

picture (TTL = 5m)

Get suggested
description, category

and severity

Citizen

Frontend

takes picture
"Use Photo" WRITE

Submit?

Backend

Async process will NOT write
 at the DB

START LOADING... (10s max)

Discard
(TTL will remove)

1. Get language and
possible categories of

the organization

If no organization,
blocks with modal

Submission process, user
may change description and
category if needed

POST /occurrence/pre-submission

Photo
Anonymization

Photo
Anonymization

(Create photo_id)

Sync

future work

future work

POST /occurrence
Incident exists?

DELETE incident_details with TTL

Read incident_details

INSERT incident_details (count = 0)

INSERT incident_by_status

INSERT incident_by_status_and_category

yes/no

YES

with latitude and
longitude of the marker, and severity

Job
Clustering

occurrence_id

photo, latitude, longitude

Get organization_id with
(lat,long) h3_index

Organization
exists?

NO
"Confirm"

Exact Location

Lat & Lon of the phone

Generate
description,
category and
severity using

AI LLM
(photo_id)

We always make the insertion of the new incident to display immediately on user account

WebsocketData arrives
< 10s?

Yes

STOP LOADING...

No

User will fill in the
form inputs

Description, category, severity

Yes

No

Send occurrence
details

Always

(Check if the temporary incident
created above didn't expire)

No
On the incident created above:

1. Create Occurrence

2. Update Incident
Counter

STOP LOADING...

send user description and llm
 description on post occurrence

Figure 5.13: User Reports an Occurrence Flow Description.

Phase 1: User Initiates Report and Pre-Submission. The reporting process commences
with the citizen taking a photograph of the urban issue. Concurrently, the system automatically
captures relevant metadata, including the precise geographical coordinates (latitude and longi-
tude). This preliminary data, comprising the photograph and its geolocation, is then transmitted
to the backend via a POST /occurrence/pre-submission API endpoint.

Upon receiving this request, the backend undertakes an initial processing step. It attempts
to identify an associated organization_id based on the provided geolocation. A critical check
ascertains if a corresponding organization is registered within the platform’s database. Should

51

an organization exist, the process proceeds. Following this, the system retrieves essential orga-
nizational data, specifically the language settings and the pre-defined categories relevant to that
organization (e.g., ”urban drainage,” ”traffic signs,” ”potholes”).

Crucially, a temporary incident is then instantiated on the backend, linked to the captured
picture and assigned a short Time-To-Live (TTL) of 5 minutes. Immediately thereafter, an
asynchronous process, designated as ”Job 1 - Generate description, category and severity”,
is triggered. This job leverages the Gemini multimodal LLM to analyze the submitted image and
generate a contextual description, categorize the incident and assess its severity. The detailed
mechanics of Job 1 will be elaborated subsequently. Once Job 1 successfully processes the data (i.e.,
generates the description, category and severity), the backend proactively establishes a WebSocket
connection to the frontend to transmit this AI-generated information.

Phase 2: Frontend User Interaction and AI Response. The frontend also prompts the
user to confirm the exact location of the incident. After this, the application displays a loading
state. If the AI-generated ”Description, category and severity” are not received within a strict
10-second window, the system intelligently allows the user to manually input the description
and select a category, ensuring continuity of the reporting process even in the event of an AI
processing delay or failure.

Once the user reviews the displayed (either AI-generated or manually entered) information,
they are prompted to confirm the submission. If the user decides to discard the report, the
temporary incident and any associated data are removed from the backend, preventing unnecessary
data retention.

Phase 3: Final Submission and Backend Processing. Upon the user’s confirmation, the
frontend transmits the finalized occurrence details – including the confirmed latitude, longitude of
the marker and severity – to the backend via a POST /occurrence API endpoint. This constitutes
the definitive submission of the incident report.

The backend then processes this final submission. A preliminary check verifies the validity
of the temporary incident created in Phase 1; if its TTL has expired, the user is required to re-
initiate the reporting process. Assuming the temporary incident is still valid, the system proceeds
with the incident management logic. For every occurrence reported, a new occurrence record is
created and the overall incident counter is updated (as a single incident can encompass multiple
related occurrences). Simultaneously, the temporary incident is removed and the permanent data
is committed to the appropriate tables within the database.

Immediately following this, ”Job 2 - Clustering” commences as a second asynchronous
process. This job is pivotal for identifying and grouping related occurrences, ensuring that city
operators receive a consolidated view of similar reports. This clustering mechanism is instrumental
in avoiding redundancy and significantly enhancing operational efficiency, a process that will be
explained in greater detail in a later section. After Job 2 completes, ”Job 3 - Update Incident
Description and Severity” begins as the final step, aiming to update the main description and
severity of an existing incident by incorporating the details of the latest occurrence.

5.2.4.2 Job 1 - Generate Description, Category and Severity

This asynchronous job is initiated as part of Phase 1 of the incident reporting flow, immedi-
ately following the creation of a temporary incident. Its primary function is to leverage a Large
Language Model (LLM) to analyze the submitted photograph and automatically generate a con-
textual description, classify the incident into a predefined category and assess its severity. This
job exemplifies the core AI integration within the FixAI platform.

The process, illustrated in Figure 5.14, begins with the LLM Producer (part of the Business
Logic Layer) creating a message that contains essential data: the Photo ID (identifying the image
stored in MinIO), the Incident ID (referencing the temporary incident), the Org Categories

(pre-defined categories specific to the organization), the Org Language (the language set for the

52

Generate
description

and category
using AI LLM

(photo_id)

LLM Producer

LLM Consumer

Photo ID, Incident ID,
Org Categories, Org

Language, TTL

Use Photo ID to
download from MinIO

LLM

Prompt(Photo, Categories, Language)

description
category
severity

Open Websocket to the frontend
and send the data

Figure 5.14: Flow Diagram for Job 1 - Generating Incident Description, Category, and Severity
using LLM.

organization) and the TTL (Time-To-Live for the temporary incident). This message is then sent
to the Kafka broker.

Subsequently, an LLM Consumer instance (running on the Worker01 VM) retrieves this
message from the Kafka broker. The LLM Consumer’s first action is to use the provided Photo ID

to download the actual image from MinIO, which serves as the high-performance file storage.

Once the image is retrieved, the LLM Consumer constructs a tailored prompt for the LLM
(specifically, Gemini, as detailed in the architecture). This prompt intelligently incorporates the
downloaded Photo, the relevant Categories from the organization and the specified Language.
The LLM then processes this comprehensive prompt to perform its analytical task.

The output from the LLM consists of the generated description, the assigned category and
the assessed severity of the incident. Upon receiving this structured response from the LLM, the
LLM Consumer’s final step is to establish a WebSocket connection directly to the frontend. This
connection is used to transmit the newly generated description, category and severity data back
to the user interface in real-time, enabling the citizen to review the AI’s output before finalizing
their report.

5.2.4.3 Job 2 - Cluster Related Reports

This asynchronous job is initiated immediately following the final submission of an occurrence
(as detailed in the Section 5.2.4.1). Its primary objective is to group newly reported occurrences
with existing incidents that are spatially and semantically similar, thereby reducing redundancy
for city operators and enhancing management efficiency.

53

The clustering process, depicted in Figure 5.15, begins by compiling two distinct lists of incident
IDs. The first list comprises incident IDs from neighboring hexadecimal cells (leveraging
the H3 geospatial indexing framework, detailed in 2.2.7), while the second lists incident IDs
located within the same hexadecimal cell as the new occurrence. These two lists are then
concatenated to form a comprehensive list of potential related incident IDs.

A critical check ascertains if this combined list of incident IDs has a length greater than zero.
If the list is empty (indicating no proximate existing incidents), the process bypasses further
clustering. However, if potential incidents exist, the system proceeds to loop through all inci-
dents to stay only with the incidents with the same category. This filtering step generates an
updated_list_of_incident_ids.

Following this, another check verifies if this refined list is empty. If it is, the clustering process
again bypasses the similarity assessment. If the list contains incident IDs, the system invokes the
LLM (Large Language Model) to assess the semantic similarity between the new occurrence’s
description and the descriptions of the incidents in the refined list. The LLM returns a ”Similarity
Percentage” for each pair. From these similarity results, the system filters for the single incident
with the highest similarity percentage. A crucial threshold is then applied: if this highest
percentage is less than 80%, it is determined that the new occurrence is not sufficiently similar to
any existing incident and it proceeds as a distinct incident. Conversely, if the similarity percentage
is 80% or greater, the new occurrence is considered related. In this scenario, the new occurrence
is grouped under the identified existing incident. This grouping also triggers an update to
the overall incident counter for that existing incident.

Upon completion of the clustering logic, regardless of whether the occurrence was grouped or
became a new incident, the process proceeds to trigger Job 3, which will be explained in the next
subsection.

5.2.4.4 Job 3 - Update Incident Description and Severity

This asynchronous job is a critical final step in the incident processing pipeline. It is triggered
after an occurrence has been successfully clustered with an existing one. The primary purpose
of this job is to intelligently update the main description and severity of an incident based on
the latest incoming occurrence and the incident’s historical data, ensuring the most accurate
representation of the ongoing issue.

The process, as depicted in Figure 5.16, begins with the job receiving a set of crucial inputs.
These inputs include the photo_id of the newly processed occurrence, its occurrence_description
(initially generated by Job 1), the previous_main_description and previous_severity of the
incident to which this occurrence is now linked.

photo_id,
occurrence_description,
previous_main_description,
previous_severity

LLM
Update main description and

severity on incident_details where
incident_id

main_description,
severityJob

Merge

Figure 5.16: Flow Diagram for Job 3 - Update Incident Description and Severity.

These combined inputs are then fed into the LLM (Large Language Model). The LLM’s
task in this context is to synthesize this information. By considering both the new occurrence’s
details and the incident’s prior state, the LLM generates a refined, updated main_description

and severity for the incident. This allows the system to evolve the incident’s summary as more
related occurrences are reported, providing a dynamic and current overview.

Finally, the output from the LLM is used to update the incident_details record in the
main database, ensuring that the centralized incident record accurately reflects the most current
understanding of the urban issue, which is then visible to city operators.

54

List Incident IDs
in Neighbours

List Incident IDs
on the hex itself

Job
Clustering

List Incident IDs

Concatenation of the 2 lists

length == 0

No

Ask LLM for pairs:
Incident ID - Main_Description

Similarity Percentage

Filter the incident with
highest percentage

Updated list_of_incident_ids

length == 0
Yes

Percentage
< 90% ?

Loop over all the incidents
to stay only with the incidents

with the same category

Yes

No

Yes

No

incident_id

Group the new occurrence
under this incident_id

Update Incident
Counter

photo_id,
occurrence_description,
previous_main_description,
previous_severity

1 result from
this step

photo_id,
occurrence_description,
previous_main_description,
previous_severity

Job
Merge

Figure 5.15: Flow Diagram for Job 2 - Cluster Related Reports.

55

5.3 Security Mechanisms

Security is a paramount concern for our platform, ensuring the confidentiality, integrity and
availability of sensitive urban infrastructure data and user interactions. This section details the
multi-layered security mechanisms implemented, spanning from robust authentication and session
management to fine-grained access control and fundamental network-level protections.

5.3.1 Tokens, Cookies and Session Management

For the FixAI platform, we implemented a robust authentication and session management
system leveraging JSON Web Tokens (JWTs) to secure user interactions. This application-level
security is further enhanced by network-layer defenses such as HTTPS encryption and reverse
proxying, the comprehensive details of which are elaborated in Section 5.5.1 on Kubernetes-
based orchestration. This approach provides flexible authentication for both mobile and desktop
applications.

5.3.1.1 Login Process

The authentication process begins when a user submits their credentials (e.g., username and
password) to the Auth Server’s login endpoint, as illustrated in Figure 5.17. Upon successful
validation, the Auth Server issues a pair of JWTs: an Access Token, which is a short-lived token
used to authenticate requests to protected resources, and a Refresh Token, a long-lived token used
to obtain new access tokens once the current one expires. For the React Native Mobile App, these
tokens are stored in secure local storage within the client device. Conversely, for the ReactJS
Desktop App, the tokens are securely set as HttpOnly cookies, providing an additional layer of
security by preventing client-side JavaScript access to these sensitive credentials. This strate-
gic differentiation in token storage accommodates the distinct security postures and operational
requirements of mobile and desktop environments.

ReactJS
Desktop App

React Native
Mobile App

Secure
Storage Cookies

Acess Token

Refresh Token

HttpOnly Cookie
(with access &
refresh tokens)

Client

Auth Server
/login

Credentials

JWT Access &
Refresh Tokens

Figure 5.17: Security Login Process.

5.3.1.2 Successful Request Flow

Once authenticated, the client can make requests to the Resource Server by including the Access
Token in the request headers (using a Bearer token in the Authorization header, in the case of the
mobile app, and a cookie, in the case of the desktop app). As depicted in Figure 5.18, the Resource
Server does not directly validate the token’s authenticity or expiration. Instead, it forwards the
Access Token to the Auth Server’s internal verify endpoint. This separation of concerns ensures
that token validation logic is centralized and managed exclusively by the Auth Server. If the
Access Token is valid and unexpired, the Auth Server responds with a token verification success,
allowing the Resource Server to process the request and return the requested data with a 200

OK status. This design minimizes the Resource Server’s knowledge of authentication mechanisms,
enhancing security and maintainability.

56

ReactJS
Desktop App

React Native
Mobile App

Secure
Storage Cookies

Acess Token

Refresh Token

HttpOnly Cookie
(with access &
refresh tokens)

Client

Request

w/ Access Token

Resource Server

Response
{data}

Status: 200 OK

Verify Access Token

Auth Server
/verify

Storage
Refresh Token

Token Verification Response

/verify endpoint
is only exposed

internally

Figure 5.18: Security Successful Request Flow.

5.3.1.3 Failed Request Handling

In scenarios where a client’s Access Token is invalid or has expired, the request handling devi-
ates as shown in Figure 5.19. When the Resource Server forwards the invalid Access Token to the
Auth Server’s internal verify endpoint, the Auth Server detects the token’s expiry or invalidity.
It then responds to the Resource Server with a ”Token Expired Response.” Consequently, the
Resource Server returns a 401 Unauthorized status to the client. This error handling mechanism
clearly signals to the client that the current Access Token is no longer valid, prompting a token
refresh action without exposing sensitive authentication details.

ReactJS
Desktop App

React Native
Mobile App

Secure
Storage Cookies

Acess Token

Refresh Token

HttpOnly Cookie
(with access &
refresh tokens)

Client

Request

w/ Access Token

Resource Server

Response
{data}

Status: 401 Unauthorized

Verify Access Token

Auth Server
/verify

Token Expired Response

/verify endpoint
is only exposed

internally

Storage
Refresh Token

Figure 5.19: Security Failed Request Handling.

5.3.1.4 Access Token Refresh Mechanism

To maintain continuous user sessions and mitigate the risks associated with long-lived Access
Tokens, we implemented an automated token refresh mechanism, as detailed in Figure 5.20. When
an Access Token expires, the client utilizes the Refresh Token to request a new Access Token from
the Auth Server’s refresh endpoint. The Refresh Token, securely stored alongside the Access
Token (in secure storage for mobile, or as an HttpOnly cookie for desktop), is sent to the Auth
Server. The Auth Server validates the Refresh Token against its Refresh Token Storage. If the
Refresh Token is valid and unexpired, the Auth Server issues a new Access Token, which is then
returned to the client. By implementing this process, we allow users to remain logged in without
repeatedly re-entering credentials, significantly improving user experience while upholding security
best practices by rotating Access Tokens periodically.

57

ReactJS
Desktop App

React Native
Mobile App

Secure
Storage Cookies

Acess Token

Refresh Token

HttpOnly Cookie
(with access &
refresh tokens)

Client Expired Access Token
+ Refresh Token

New Access Token

Auth Server
/refresh

Storage
Refresh Token

Storage

Figure 5.20: Security Access Token Refresh Mechanism.

5.3.1.5 Frontend Session Management

Authentication on the frontend is uniformly managed through a dedicated AuthContext, which
centralizes logic for login, logout and session management.

For the React Native Mobile App, JWT tokens issued by the backend upon login are securely
stored using the expo-secure-store library. Initially, async-storage was employed for token
persistence, but it was subsequently replaced by expo-secure-store due to its capability to
encrypt data at rest, offering enhanced protection for sensitive user credentials. On application
launch, the authentication context performs a check for a stored access token to determine whether
an existing user session should be restored. A preconfigured axios instance, integrated within the
context, automatically attaches the Access Token to every outgoing HTTP request. Furthermore,
it leverages response interceptors to transparently manage session expiration. When a request
elicits a 401 Unauthorized response, the interceptor ascertains if the error is attributable to token
expiration. If so, it automatically attempts to refresh the access token by dispatching a request to
the refresh endpoint, with the stored Refresh Token temporarily included in the request header.
Should the token refresh prove successful, the newly issued tokens are securely updated in storage,
and the original failed request is automatically retried. Conversely, if the refresh operation fails,
indicating an invalid or expired Refresh Token, the user is redirected to the login page to re-
authenticate. The encapsulation of this intricate logic within the authentication context provides
a clean and centralized interface for all authentication-related operations, including login, logout
and token management.

Similarly, in the Desktop App, authentication is also handled via a dedicated AuthContext

where, instead of handling manually the token’s storage, the axios instance is configured with
withCredentials:true so the HttpOnly cookies are sent to the API.

This consistent approach across both mobile and desktop applications delivers a secure au-
thentication experience throughout our entire platform.

5.3.1.6 Benefits of this Approach

This JWT-based authentication strategy offers substantial benefits across both user experience
and security, pivotal for the effective operation of our platform.

From a user experience perspective, the implementation of Refresh Tokens enhances session
continuity. Users are not subjected to frequent re-authentication prompts, even after extended
periods of inactivity, as the system renews Access Tokens in the background. This smooth, unin-
terrupted access fosters a more intuitive and less frustrating user journey.

The security advantages of this architecture are multifaceted. The core benefit stems from the
stateless nature of JWTs on the Resource Server. By not requiring the server to store session
information, the system gains inherent scalability, as any Resource Server instance can process
any request without maintaining individual user states. This also reduces the server’s memory
footprint and minimizes the attack surface for session-related vulnerabilities. The use of short-
lived Access Tokens significantly limits the exposure window if a token is intercepted, even if
compromised, its utility is brief. Conversely, long-lived Refresh Tokens, when stored securely
(e.g., in HttpOnly cookies for desktop applications, preventing client-side JavaScript access via
Cross-Site Scripting (XSS) attacks), allow for extended user sessions without the security risks as-
sociated with long-lived Access Tokens. The separation of concerns, where the Resource Server
delegates token validation to the Auth Server, further strengthens security. This centralization
of authentication logic reduces complexity on the Resource Servers, limiting their responsibilities

58

and potential vulnerabilities. It also facilitates easier maintenance and updates to authentication
mechanisms without impacting the core application logic.

In general, this approach provides a scalable, secure and user-friendly authentication foundation
for FixAI.

5.3.2 Role Based Access Controll (RBAC)

A Role-Based Access Control (RBAC) system is implemented to ensure that users can only
access resources and functionalities relevant to their assigned roles and permissions. This granular
control is critical for maintaining data integrity and system security within a collaborative platform
serving diverse user types. The system defines two primary roles: Citizen and Operator.

The Citizen role is assigned to general users interacting with the mobile application. Citizens
are granted permissions strictly limited to their own reported incidents and occurrences. For
instance, a citizen is authorized to view the details and track the status of occurrences they have
personally reported, but they are explicitly excluded from accessing reports by other users, a
restriction directly informed by discussions with our main stakeholders, the city council workers,
and cannot manage any organizational data.

The Operator role is designated for employees who interact with the desktop dashboard.
Operators possess broader access rights pertinent to urban infrastructure management. Crucially,
their access is scoped to the specific organization (e.g., a municipality, a private organization,
etc.) they belong to. An Operator can view, update and manage incidents and occurrences that
fall under their organization’s purview. They are, however, restricted from accessing data or
performing operations related to other organizations.

The enforcement of RBAC is deeply integrated into the API’s endpoint logic. JWT Access
Tokens in FixAI are structured to carry essential claims about the authenticated user within their
payload. Specifically, Access Tokens include a user identifier, an email address, and optionally
an organizational identifier for Operator users, along with a token type (”access”). This data is
embedded into the token during its creation, where for Citizen users, the organizational identifier
field is explicitly set to a null value, differentiating their role directly within the token’s claims.
When a request for specific resource details arrives at a data retrieval endpoint, the system de-
termines access rights based on these claims within the authenticated user’s token. If the token
contains an organizational identifier, indicating an Operator, the system verifies that the requested
resource’s organizational affiliation matches the organizational identifier embedded in the authen-
ticated Operator’s token. Conversely, if the organizational identifier is absent in the token (i.e.,
it holds a null value), indicating a Citizen, the system verifies that the resource’s user identifier
matches the user identifier embedded within the Citizen’s token. Should these conditions not be
met, an HTTPException with a 403 Forbidden status is raised, effectively preventing unautho-
rized access. This is one example of the verifications that we have implemented. This dynamic
validation ensures that every data access request is authorized not just by a valid token, but also
by the user’s role and their specific scope within the system, adhering to the principle of least
privilege.

5.4 Issue Automatic Resolution

In order to streamline the management of reported incidents, this module aims to provide
an automated way to verify whether an issue has already been resolved. The proposed solution
involves the use of an autonomous IoT device capable of capturing video footage of the incident
area and sending it to the backend for analysis. For validation purposes, we used the PIXKIT
device from ATCLL.

Once the video is received by the backend, it is processed using a Large Language Model (LLM)
that compares the current visual evidence with the original report and determines whether the
problem has been effectively resolved. If so, a resolution suggestion is sent to the organization’s

59

operator via the desktop application, accompanied by the recorded video. The operator can then
confirm the result and officially mark the incident as resolved.

This section describes the backend process and explores different solutions for verifying incident
resolution, including a mobile client implementation and integration with the PIXKIT device.

5.4.1 Backend Process Overview

To support both the mobile client and the PIXKIT device, the backend exposes a set of REST
endpoints that enable the detection and resolution verification of previously reported incidents.
This functionality is central to the system’s goal of automating incident closure suggestions based
on real-world visual input.

The backend includes two key endpoints:

• GET /incidents/check-nearby – Accepts geolocation data and vision parameters such as
latitude, longitude, heading, frontal sight, lateral sight, and degree sight. It
returns a list of UUIDs corresponding to incidents located within the current field of view
of the device.

• POST /incidents/process-video - Receives an incident id and a recorded video file.
It creates an asynchronous job that sends the incident’s image, category, and description,
along with the captured video, to a Large Language Model (LLM) for analysis. The LLM
compares the current visual evidence against the original report to determine if the issue
appears resolved.

To determine whether an incident is in view, the system relies on geometric calculations that
simulate the device’s field of vision. Based on the device’s location, speed and heading, three key
points are computed to define a triangular area:

• p0 is the current geolocation (latitude, longitude),

• p1 and p3 represent the lateral limits of the camera’s field of view,

• p2 represents the frontal limit, based on the forward sight.

These points are computed using geodetic projections that take into account the heading and
sight distances. The system then queries all incidents located within this defined area. The sight
parameters are dynamic and adjust according to the speed of the device, for instance, a higher
speed narrows the lateral sight while extending the frontal sight, simulating a natural tunnel-vision
effect to avoid capturing unrelated areas.

Figure 5.21 visually demonstrates this concept. On the left, it illustrates the geometrical
projection of the device’s frontal, lateral, and angular field of view. On the right, it shows the same
area translated into H3 hexagonal indexes, with red hexagons highlighting the zones containing
active incidents.

5.4.2 Existing Solutions for Video Transmission

Several approaches were explored for transmitting video from the client to the backend to
enable automatic incident resolution analysis. The goal was to provide real-time or near-real-time
visual data to the server, which could then be processed using a Large Language Model (LLM) to
verify whether an incident had been resolved.

The initial implementation, developed in Go, utilized the Gorilla WebSocket library for real-
time geolocation data reception from client devices. Video streaming was handled via an RTMP
(Real-Time Messaging Protocol) implementation, with a dedicated media server configured
to process these streams. However, this approach presented several limitations. Processing live
RTMP streams demanded considerable server resources for real-time decoding and continuous data
management. This not only increased infrastructure complexity but also introduced unnecessary

60

(a) Sight Representation. (b) Real-Time H3 Visualization Website.

Figure 5.21: Camera Field of View and Incident Mapping in the System.

latency and fragility, particularly problematic given the short duration and specific purpose of the
video clips.

We also evaluated WebRTC, a peer-to-peer (P2P) video communication protocol commonly
used in real-time applications. However, given our system’s inherent client-server architecture and
the necessity for server-side processing and storage of video data, WebRTC’s peer-to-peer design
was fundamentally incompatible with our requirements and offered no viable advantages.

After evaluating these alternatives, we concluded that the most efficient and robust solution
for our current needs was to record a short video clip (e.g., 5 seconds) and send it directly to the
backend via a standard REST API endpoint. This allowed for asynchronous processing, simple
error handling, and compatibility with both the mobile app and future IoT integrations. The
endpoint /incidents/process-video accepts the video file and initiates a background task that
forwards it to the LLM for asynchronous resolution analysis.

Similarly, for the PIXKIT integration, the device also utilizes a RESTful API to upload the
recorded video. While PIXKIT may perform preliminary, on-device processing or formatting for
geospatial data, the complete 5s video is still transmitted to the backend for the same central LLM-
based resolution analysis via the /incidents/process-video endpoint. This consistent REST-
based approach ensures simplicity, reliability and extensibility across both mobile and embedded
clients in our system.

5.4.3 Smartphone Client

To validate the video-based incident resolution flow, a simple prototype was implemented
directly in the FixAI mobile application. This client was responsible for capturing a short video
and sending it to the backend for analysis.

The implementation was straightforward: a dedicated screen was added to the mobile app that
activated the device’s camera (for validation’s purpose). When a user was detected to be in prox-
imity to a reported incident, based on their GPS coordinates and heading, the app automatically
recorded a short 5-second video clip and sent it to the server using a REST request.

Location data was accessed using the expo-location library, which also provided orientation
(heading). The camera functionality was handled by expo-camera. This combination allowed the
app to determine the user’s current position, estimate their field of vision, and detect when they
were approaching an incident zone.

This prototype served as an early proof of concept and played a key role in validating the
complete workflow: from capturing footage in the field to backend processing and LLM-based

61

Figure 5.22: PIXKIT Physical Components.

analysis of whether the incident had been resolved.

5.4.4 ATCLL (PIXKIT) Integration

In addition to the mobile client prototype, a more robust and autonomous solution was devel-
oped in partnership with Aveiro Tech City Living Lab (ATCLL) using the PIXKIT device. This
integration aimed to evaluate the feasibility of real-time incident verification in the field using edge
computing and sensor data.

Figure 5.22 shows the complete hardware setup. The PIXKIT device includes:

• A V2X camera capable of RTSP video streaming.

• A GNSS module for high-precision geolocation.

• An onboard processing unit running both an RTSP server and an MQTT broker.

The system operates as follows: the PIXKIT continuously publishes MQTT messages contain-
ing its geolocation metadata, including latitude, longitude, speed, and heading, to a specific topic.
Our system subscribes to this topic, extracting the relevant data to compute the current position
and estimated field of view of the device using the same vision cone model discussed earlier.

With this geospatial data, the system queries the /incidents/check-nearby endpoint to
determine if any open incidents lie within the PIXKIT’s viewing area. If any are detected, the
system triggers a short recording session from the camera stream (via RTSP). A 5-second video
clip is extracted, stored locally, and immediately sent to the backend via a REST endpoint for
LLM-based analysis.

The RTSP stream is handled by a dedicated module that keeps the connection alive and man-
ages concurrent video writers to record only when required, avoiding unnecessary overhead. This
lightweight approach allowed processing to be done on the PIXKIT itself, significantly reducing
bandwidth and latency, since only short video clips are transmitted.

Figure 5.23 illustrates the full architecture of the system, highlighting the RTSP video stream,
MQTT location updates, and REST communication with the backend.

Finally, a proof-of-concept demonstration was developed to visualize the functionality in action.
As seen in Figure 5.24, the figure is divided into three parts:

62

Figure 5.23: PIXKIT Integration Diagram.

• Top-left: A physical photo of the PIXKIT device used in the field.

• Bottom-left: The actual camera feed captured by the PIXKIT, showing its perspective.

• Right: The real-time representation of the PIXKIT’s location in the system, rendered
with H3 hexagons. A red hexagon highlights the position of a previously reported incident,
currently under re-evaluation.

This integration proved the system’s potential to autonomously verify incidents using low-
power IoT hardware, combining computer vision and geospatial analysis in a seamless pipeline.

5.5 Infrastructure and Deployment

The deployment of the system is orchestrated through a Kubernetes-based infrastructure,
chosen to address the architectural priorities of scalability, fault tolerance, service isolation
and operational flexibility. Given the system’s design, composed of stateless backend ser-
vices, event-driven consumers and distributed stateful components, Kubernetes offers a robust
and declarative environment for managing these diverse workloads.

A key motivation for selecting Kubernetes lies in its native support for horizontal scal-
ing, which is central to the system’s ability to dynamically adjust resource allocation based on
demand. Stateless components, such as the backend and LLM consumers, benefit from Kuber-
netes’ replica management and service abstraction mechanisms, enabling seamless scaling without
modifying application logic. This aligns directly with the modular architecture of the system, as
described in Section 4.1.1.

Moreover, the inclusion of distributed storage technologies such asApache Cassandra and ob-
ject storage systems required infrastructure capable of managing persistent volume claims, ordered
pod deployment, and stable network identities. Kubernetes provides these guarantees through its
StatefulSet and StorageClass primitives, which ensure consistency, durability, and recov-
erability of stateful services. This design decision is further supported by the distributed data
model and write-intensive access patterns discussed in Section 2.2.3.

Kubernetes also brings operational advantages, such as declarative infrastructure defi-
nitions, automatic service discovery, rolling updates, and resource monitoring. These
capabilities simplify the management of a multi-service system and enhance resilience against
failure by enabling controlled restarts, load balancing, and self-healing behavior across the cluster.

In alignment with the project’s operational constraints and deployment goals, the lightweight
Kubernetes distribution K3s was chosen as the orchestration runtime. As discussed in Sec-
tion 2.2.5.6, K3s offers a fully compliant Kubernetes API surface while significantly reducing

63

Figure 5.24: Demonstration of PIXKIT Camera, Vision and Hexagon-Based Incident Evaluation
(Video Demo: here).

the operational overhead associated with traditional Kubernetes setups. Its compact footprint,
single-binary installation model, and streamlined control plane make it particularly suitable for
development environments, as well as for deployments on limited-resource infrastructure such as
virtual machines. These characteristics allowed the project to maintain a production-grade
orchestration layer without incurring the complexity of managing a full-scale Kubernetes in-
stallation, while still supporting all the native Kubernetes features. K3s therefore provided the
necessary infrastructure capabilities while preserving system portability and administrative
simplicity.

Overall, Kubernetes was selected not merely as a container orchestrator, but as a foundational
platform that fulfills both the functional and non-functional requirements of the system. Its
ecosystem and tooling support, combined with a well-defined abstraction model, made it the most
appropriate choice for deploying and managing the application in a production-ready, scalable
manner.

5.5.1 Kubernetes-Based Orchestration Setup

The Kubernetes-based orchestration shown in Figure 5.25 begins with the deployment of a K3s
cluster across two Ubuntu virtual machines. One node is configured as the control plane (Master
01), and the other as a worker node (Worker 01). K3s was installed using the official installation
script on both nodes and the cluster was initialized from the master, and the worker node joined
using the node token generated during initialization. Since the setup is minimal, with only two
nodes available, the default scheduling taint applied to the master node was removed allowing
workloads to be scheduled on both machines, optimizing resource usage across the cluster.

In order to support persistent storage across multiple nodes, a NFS Server was configured on
the master node as the Figure 4.2 shows and the exported directory /mnt/nfs is shared across the
Kubernetes network and provides a common mount point for dynamically provisioned volumes.
The NFS server was installed, the export rules were defined in /etc/exports, and appropriate
permissions were applied to allow shared access. This setup ensures that data persisted by one
pod remains accessible if that pod is rescheduled onto a different node.

To automate the creation of Persistent Volumes, the NFS Subdir External Provisioner was

64

https://youtu.be/vhJe7rC87BM

Figure 5.25: Kubernetes Implementation Diagram.

65

deployed in the cluster, so, it means that it runs as a pod within the kube-system namespace
and manages volume provisioning using subdirectories within the shared NFS root path. The
provisioner was configured with the environment variables NFS SERVER and NFS PATH, pointing
respectively to the master node’s IP and the exported directory. Storage classes were then defined
for each stateful component (e.g., Cassandra, MinIO, Zookeeper), each class specifying the NFS
provisioner, volume expansion permissions, and a custom reclaim policy.

A centralized ConfigMap, named app-config, was also created to manage shared environ-
ment variables across all components in the cluster. This configuration file contains settings such
as hostnames, ports, bucket names, Redis and Kafka configurations, and MinIO credentials. Ref-
erencing this ConfigMap within pod specifications standardizes configuration management, facili-
tates updates, and avoids hardcoding values within individual manifests. It is imported into pods
via the envFrom field, allowing each container to access its key-value pairs as standard environment
variables.

K3s includes the Traefik ingress controller by default, which was used to route HTTPS traffic
from external clients to internal services. Application traffic is forwarded to the backend service
through defined ingress rules, which reference internal ClusterIP services by port and offers two
paths, the api via /api/v1/ and the websocket via /ws/. This configuration provides a single,
secure entry point into the cluster, while also supporting path-based routing and TLS termination.

To enable secure HTTPS communication, a TLS certificate and private key were generated
and then uploaded to the master node and registered as a Kubernetes TLS secret using the sudo
k3s kubectl create secret tls command. The secret was assigned a specific name and stored
within the default namespace.

Ingress rules were configured to reference this secret under the tls field of the Ingress resource
specification. The rules included the fully qualified domain name used for TLS validation, the
paths prefix to be matched as mentioned earlier, and the service name and port to which traffic
should be directed. By associating the secret with the ingress resource, Traefik was able to
terminate HTTPS requests at the edge of the cluster, ensuring that all external communications
were encrypted.

5.5.2 Cassandra Deployment Setup

The deployment of Apache Cassandra followed the Kubernetes StatefulSet pattern, which
provides stable network identities, persistent volume claims, and ordered startup behavior and it
was initially configured with a single replica, but its definition is prepared for future horizontal
scaling. Cluster awareness in Cassandra was established through critical environment variables
that define the seed node, broadcast and listen addresses, data center and rack information, and
other metadata. These settings allow each pod to autonomously identify and communicate with
other nodes in the cluster once replicas are scaled beyond one. Cassandra listens on port 9042
for CQL and port 7000 for intra-node gossip communication. Both ports were exposed via
Kubernetes services to fulfill their respective roles in data access and internal synchronization.

Persistent volumes for Cassandra were provisioned dynamically using the nfs-cassandra Stor-
age Class, which integrates with the NFS Subdir External Provisioner to mount a unique subdirec-
tory on the shared NFS server for each pod. This guarantees storage isolation while maintaining
centralized persistence. To ensure readiness and service stability, a readiness probe invoking cqlsh
was included, delaying pod availability in the cluster until the database is fully responsive.

Cassandra was exposed internally via two Kubernetes services: a standard ClusterIP service
used by application components to send queries, and a Headless Service for intra-node com-
munication essential for maintaining gossip and cluster state. These service abstractions enable
future horizontal scaling without requiring manual updates to pod IP addresses or DNS entries,
preserving the declarative nature of the deployment as explained in Section 2.2.5.2.

66

5.5.3 Kafka & Zookeeper Deployment Setup

Following the deployment of Cassandra, the message brokering system was implemented us-
ing Apache Kafka, with Zookeeper serving as its coordination backend. Both components were
deployed as separate StatefulSets to support consistent pod identity, persistent storage, and
ordered startup behavior which are key requirements for maintaining distributed consistency and
reliable messaging semantics.

Zookeeper was configured as a single-replica StatefulSet using the confluentinc/cp-zookeeper
image. The pod exposes the standard communication ports 2181 (client connections), 2888 (peer
communication), and 3888 (leader election). Zookeeper’s configuration was defined via environ-
ment variables, including the cluster unique address, allowing for future horizontal scaling by
appending additional entries to the ensemble. A persistent volume is automatically provisioned
through the nfs-zookeeper StorageClass, with each pod writing to its own subdirectory on
the NFS server, as established earlier in the infrastructure. The service is exposed via both a
ClusterIP service for internal access and a Headless Service to support intra-node DNS-based
resolution, ensuring full support for Zookeeper’s quorum-based coordination logic.

Kafka was similarly deployed as a StatefulSet using the confluentinc/cp-kafka image,
configured to expose port 9092 for plaintext communication. To enable cluster-aware behavior,
environment variables defined key settings such as the broker ID (computed dynamically based
on the pod hostname), listener configuration, advertised addresses, and the connection string to
the internal Zookeeper service. Kafka was exposed internally through two services: a ClusterIP

service for standard access and a Headless Service that enables internal broker discovery, sup-
porting seamless communication between potential multiple replicas in the future. The pod mounts
its persistent data to the /var/lib/kafka path, backed by volumes dynamically provisioned from
the nfs-kafka StorageClass.

This design ensures that both Kafka and Zookeeper are prepared for distributed, horizon-
tally scalable deployment while maintaining the correct startup and communication semantics
dictated by each system. The use of Headless Services, stateful DNS naming, and storage
isolation across pods collectively support Kafka’s broker-based topic partitioning and Zookeeper’s
fault-tolerant coordination model, essential for the system’s asynchronous processing and event
streaming pipeline.

5.5.4 MinIO & Redis Deployment Setup

In contrast to distributed components like Cassandra, Kafka, and Zookeeper, both MinIO and
Redis were deployed using Kubernetes StatefulSet resources, but with single-instance replicas
and without the use of Headless Services, therefore, they can only replicate data. These services
do not participate in inter-node clustering but still require persistent volumes for maintaining
critical data.

MinIO was configured to run as a standalone object storage server, and for that, it mounts
a dedicated persistent volume claim using the nfs-minio StorageClass, backed by the same
dynamically provisioned NFS server configured earlier. The pod runs on port 9000 and uses a
predefined set of environment variables sourced from the shared ConfigMap, including admin-
istrative credentials, bucket names, and networking configuration. The configuration ensures a
reproducible and centralized definition of operational parameters across environments, simplifying
secret management and infrastructure-as-code strategies.

Redis was deployed in a similar fashion, using a single replica StatefulSet and a persistent
volume claim based on the nfs-redis StorageClass. The pod exposes port 6379 for client
interactions and persists its data to an NFS-mounted volume at /data. As Redis operates as an
in-memory cache with durability enabled via volume mounts, this configuration provides resilience
against unexpected pod restarts without introducing the complexity of clustered Redis replication.

67

5.5.5 Stateless Deployments: Backend & LLM Consumers

The backend service and all LLM consumers were deployed using the Deployment resource,
which is designed for stateless workloads that can be safely terminated and restarted without
local data persistence. Each deployment runs a single replica, but can be horizontally scaled by
simply increasing the replica count. This stateless model is consistent with the architectural goals
outlined in Section 4.1.1, particularly regarding elasticity and service modularity.

The backend service is responsible for exposing RESTful endpoints to external and internal
clients. It is deployed as a standard container listening on port 8000 and configured via envi-
ronment variables sourced from the shared ConfigMap. These include credentials, service URLs,
ports, and access keys that provide the necessary configuration to connect with databases, caches,
and object storage.

Similarly, three specialized LLM consumer services were deployed as separate pods: the Check
Resolved Incidents Consumer, the Clustering Consumer, and the Description Consumer.
Each listens to a dedicated Kafka topic and performs model inference or preprocessing tasks
in response to events. These services operate on ports 8044, 8043, and 8042 respectively, and
each receives a unique TOPIC NAME and LLM GROUP INSTANCE ID through individual environment
variables. Common configuration values, such as Kafka broker address and MinIO credentials, are
again provided by the centralized ConfigMap.

Because these services are designed to be stateless and event-driven, they do not require per-
sistent storage. Kubernetes Deployments provide a robust restart mechanism and seamless pod
rescheduling across nodes in the event of failure or resource changes, thereby aligning with the
resilience and scalability requirements of this architecture.

5.5.6 Final Steps for Deployment

Once all manifests were written and the services properly defined, the final step to enable full
deployment was to integrate with a container registry and configure authentication. A Contin-
uous Delivery (CD) pipeline, builds container images from each service and publishes them to
the GitHub Container Registry (GHCR) under the repository’s organization. To pull these
private images at runtime, each Kubernetes node must be granted permission to authenticate with
GHCR.

This was achieved by creating a Kubernetes docker-registry secret named ghcr-secret

using the following command shown in Figure 5.26:

k3s kubectl create secret docker -registry ghcr -secret \
--docker -server=ghcr.io \
--docker -username=<YOUR_GH_USER > \
--docker -password=<YOUR_PAT > \
--docker -email=<YOUR_EMAIL >

Figure 5.26: Kubernetes Docker Registry Secret Command.

This secret is referenced within each Deployment or StatefulSet manifest as illustrated in
Figure 5.27:

spec:
imagePullSecrets:

- name: ghcr -secret
containers:

- name: myapp
image: ghcr.io/<YOUR_ORG >/myapp:<TAG >
imagePullPolicy: IfNotPresent

Figure 5.27: Kubernetes Image Pull Secret Configuration.

68

To deploy a new version of any application, it is sufficient to update the container tag in the
corresponding manifest and then trigger a restart of the relevant pod. Kubernetes will pull the
updated image from GHCR and redeploy the service seamlessly, allowing for controlled, versioned
rollouts across the cluster.

5.6 Quality Assurance

5.6.1 Code Quality Standards

Code quality was a cornerstone of our project’s development, maintained through a well-
structured GitHub organisation and a robust set of tools and practices. Our work was distributed
across several dedicated repositories, ensuring modularity and clear ownership:

• Documentation: Project and technical documentation.

• Mobile: React Native implementation for the mobile application.

• Sensors-Process-Unit: Containerized processing unit for PIXKIT data, interacting with
the main application.

• Backend: Core server logic and APIs, including asynchronous jobs via Kafka Message
Queue.

• Deploy: Production environment configurations, including Kubernetes settings and deploy-
ment variables.

• H3-Viewer: Custom H3 index viewer for testing and real-time PIXKIT visualization.

• Desktop-App: Electron-wrapped React implementation for the desktop application.

• RTMP-Server: Initial Go-based RTMP server solution for PIXKIT (deprecated as pro-
cessing moved in-vehicle).

For continuous code quality assurance, SonarCloud was integrated across all repositories.
This enabled static code analysis, proactively identifying and addressing technical debt, vulnera-
bilities and coding standard deviations.

Our GitHub Workflow leveraged long-lived branches (main and dev). Pull Requests (PRs)
adhered to a strict template and feature branches followed a consistent naming convention (e.g.,
feature/<name>, bugfix/<name>, hotfix/<name>, task/<name>). Code was merged first into
dev, then into main. A key aspect of our Continuous Deployment was the automatic generation
of a new container image via ghcr upon every merge to main, facilitating streamlined manual
deployments to our production environments.

5.6.2 Agile Methodology (Backlogs, Sprints, Workflows)

Our project embraced an Agile methodology, primarily centered around weekly sprints, to fa-
cilitate iterative development, continuous feedback and adaptive planning. This approach fostered
transparency and collaboration across the team.

The workflow management was meticulously organised using GitHub Boards, providing a clear
visual representation of our progress. We maintained four distinct boards, each dedicated to
a specific project area: Mobile, Website, Backend and Documentation. Additionally, a
Overview board offered an overarching view of the project’s status. Each board was structured
with four standard columns: Todo, In Progress, Review and Done. This structure allowed for a
clear subdivision of tasks, ensuring that all team members could easily track the status of work
items and contribute to their progression.

A core practice within our workflow was the issue-driven development. Every new task, bug,
or feature was first logged as a GitHub Issue. Upon resolution, each Pull Request (PR) was

69

meticulously linked to its corresponding Issue. This practice ensured full traceability from concept
to implementation, providing a clear understanding of the rationale and context behind every code
change, thereby enhancing project transparency and maintainability.

5.6.3 Team Meetings and Retrospectives

Effective communication and continuous improvement were ensured through a structured meet-
ing cadence and diligent record-keeping.

Meeting Minutes: Detailed minutes from internal team discussions were consistently doc-
umented and managed within our project’s documentation repository. This practice ensured a
centralized and accessible record of decisions, action items and key discussions.

Weekly Supervisory Meetings: Regular weekly meetings with our supervisors were a cor-
nerstone of our project’s progression. These sessions were highly structured, with the team consis-
tently preparing and presenting slides to outline: Past challenges encountered and their resolutions.
Future objectives and anticipated challenges for upcoming iterations. In-depth scientific discus-
sions on critical project aspects, including geolocation intricacies, scalability strategies, integration
with ATCLL and other relevant technical considerations. The guidance and insights from our su-
pervisors were instrumental, proving to be an essential component in the successful oversight and
direction of the project.

70

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The developed platform confirms that the core objectives have been successfully met, with
all primary components operating as intended in realistic urban contexts. The system integrates
diverse technologies, ranging from geospatial indexing and artificial intelligence to scalable data
storage and edge computing, into a cohesive and reliable solution for smart city problem reporting
and management.

A significant outcome of this validation process is the demonstrated ability of the platform to
handle real-world scenarios such as overlapping jurisdictions and asynchronous AI-driven tasks.
Furthermore, the design choices, such as the use of H3 for spatial indexing and Cassandra for high-
throughput data storage, have proven effective in supporting both performance and scalability
requirements.

From the end-user perspective, both citizen-facing and operator-facing workflows were thor-
oughly tested and validated. Citizens can report incidents with minimal effort through an intuitive
mobile interface that automatically captures the location, suggests a description and category,
and estimates severity based on photo input. City operators benefit from a desktop interface that
provides a holistic and real-time overview of urban issues, featuring smart clustering of related
occurrences, incident filtering, and heatmap visualizations for prioritization of problematic city
regions.

Additionally, functional validation covered advanced use cases such as integration with au-
tonomous edge devices. In particular, the proof of concept with the Instituto de Telecomunicações’
PIXKIT autonomous vehicle successfully demonstrated automatic status updates of previously re-
ported issues, as demonstrated in this demo. This capability is crucial for providing real-time
updates and insights, connecting urban sensing infrastructure directly with municipal services and
thereby significantly minimizing the need for human intervention.

A comprehensive video demonstration of the platform was also structured to reflect the system’s
usability, responsiveness, and intelligent automation capabilities. This serves as visual confirma-
tion of the platform’s maturity and readiness for practical deployment. This demonstration video
can be accessed here.

6.2 Future Work Directions

This section outlines potential improvements to enhance our system’s performance, privacy,
and robustness. One key area for future development is the use of large language models (LLMs),
which are currently employed in multiple parts of the system: analyzing incident-related video
clips, generating structured descriptions and categories from user reports, and clustering reports
that likely refer to the same real-world incident. While using Google’s Gemini via a cloud API
provides powerful general-purpose capabilities, it presents limitations such as per-request costs,

71

https://youtu.be/vhJe7rC87BM
https://www.youtube.com/watch?v=qCkZ_LuMujI

reliance on third-party service uptime, overgeneralization for our specific domain, and the exposure
of sensitive data. A promising improvement would be adopting a self-hosted LLM to retain data
locally and reduce dependency on external providers, although this would require additional in-
frastructure. Fine-tuning a smaller, domain-specific model could further increase effectiveness and
reduce computational overhead, allowing the model to better understand patterns and terminology
specific to our use case.

To address privacy concerns, techniques like face and license plate anonymization should be
applied to video frames before any processing. Finally, our use of the H3 geospatial index could
be improved by exploiting its hierarchical structure to optimize distributed storage and speed up
spatial queries across large incident datasets.

72

Bibliography

[Ama24] Amazon Web Services. Amazon Simple Queue Service (SQS). 2024. url: https:
//aws.amazon.com/sqs/.

[Ama25] AmazonWeb Services. Amazon S3 Storage Classes. 2025. url: https://aws.amazon.
com/s3/storage-classes/.

[Apa24] Apache Software Foundation. Apache Kafka: A Distributed Streaming Platform. 2024.
url: https://kafka.apache.org/.

[ASS18] Saurabh Anand, Pallavi Singh, and B. Sagar. “Working with Cassandra Database”.
In: (2018), pp. 531–538. doi: 10.1007/978-981-10-7563-6_55.

[Bro+20] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv preprint
arXiv:2005.14165 (2020). url: https://arxiv.org/abs/2005.14165.

[CH10] Jeff Carpenter and Eben Hewitt. Cassandra: The Definitive Guide. 2010.

[CKL15] Artem Chebotko, A. Kashlev, and Shiyong Lu. “A Big Data Modeling Methodology
for Apache Cassandra”. In: 2015 IEEE International Congress on Big Data (2015),
pp. 238–245. doi: 10.1109/BigDataCongress.2015.41.

[Coi25] Coimbra City Council. @Coimbra. Accessed 2025. url: https://apps.apple.com/
ph/app/coimbra/id1519214983?uo=2.

[Dee23] DeepMind. “Gemini: A Family of Highly Capable Multimodal Models”. In: arXiv
preprint arXiv:2312.11805 (2023). url: https://arxiv.org/abs/2312.11805.

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: arXiv preprint arXiv:1810.04805 (2018). url: https :
//arxiv.org/abs/1810.04805.

[Eng] Uber Engineering. “Uber H3 Documentation Website”. In: (). url: https://h3geo.
org/docs/highlights/indexing.

[etc24] etcd Documentation. etcd: Distributed Reliable Key-Value Store. 2024. url: https:
//etcd.io/docs/.

[Eur16] European Union. General Data Protection Regulation (GDPR). 2016. url: https:
//gdpr.eu/.

[Fas25] FastAPI Documentation. FastAPI: Modern, Fast (High-performance), Web Frame-
work for Building APIs with Python 3.7+. 2025. url: https://fastapi.tiangolo.
com/.

[Fra99] W. Randolph Franklin. PN-POLY - Point in Polygon Test. https://wrfranklin.
org/Research/Short_Notes/pnpoly.html. Accessed on [17 June 2025]. 1999.

[Gam+94] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[Goo24a] Google. Gemini API Pricing. 2024. url: https://ai.google.dev/pricing.

[Goo24b] Google. gRPC: A High-Performance, Open-Source Universal RPC Framework. 2024.
url: https://grpc.io/.

73

https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://kafka.apache.org/
https://doi.org/10.1007/978-981-10-7563-6_55
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/BigDataCongress.2015.41
https://apps.apple.com/ph/app/coimbra/id1519214983?uo=2
https://apps.apple.com/ph/app/coimbra/id1519214983?uo=2
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://h3geo.org/docs/highlights/indexing
https://h3geo.org/docs/highlights/indexing
https://etcd.io/docs/
https://etcd.io/docs/
https://gdpr.eu/
https://gdpr.eu/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://ai.google.dev/pricing
https://grpc.io/

[Gov25a] Government of Portugal. A Minha Rua. Accessed 2025. url: https://www2.gov.
pt/a-minha-rua.

[Gov25b] GovPilot. GovPilot. Accessed 2025. url: https://www.govpilot.com/.

[HBB17] Kelsey Hightower, Brendan Burns, and J. Beda. “Kubernetes: Up and Running: Dive
into the Future of Infrastructure”. In: (2017).

[Hen+20] Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In:
arXiv preprint arXiv:2009.03300 (2020). url: https://arxiv.org/abs/2009.
03300.

[Kub25a] Kubernetes CSI Documentation. nfs-subdir-external-provisioner. 2025. url: https:
//github.com/kubernetes-sigs/nfs-subdir-external-provisioner.

[Kub25b] Kubernetes Documentation. Container Runtimes. 2025. url: https://kubernetes.
io/docs/setup/production-environment/container-runtimes/.

[Kub25c] Kubernetes Documentation. Deployments. 2025. url: https://kubernetes.io/
docs/concepts/workloads/controllers/deployment/.

[Kub25d] Kubernetes Documentation. Headless Services. 2025. url: https://kubernetes.io/
docs/concepts/services-networking/service/#headless-services.

[Kub25e] Kubernetes Documentation. Highly Available Kubernetes Clusters. 2025. url: https:
//kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-

availability/.

[Kub25f] Kubernetes Documentation. Horizontal Pod Autoscaling. 2025. url: https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/.

[Kub25g] Kubernetes Documentation. Ingress. 2025. url: https://kubernetes.io/docs/
concepts/services-networking/ingress/.

[Kub25h] Kubernetes Documentation. Ingress Controllers. 2025. url: https://kubernetes.
io/docs/concepts/services-networking/ingress-controllers/.

[Kub25i] Kubernetes Documentation. kube-apiserver: The API Server. 2025. url: https :

//kubernetes.io/docs/reference/command- line- tools- reference/kube-

apiserver/.

[Kub25j] Kubernetes Documentation. kube-proxy. 2025. url: https://kubernetes.io/docs/
reference/command-line-tools-reference/kube-proxy/.

[Kub25k] Kubernetes Documentation. kube-scheduler: The Kubernetes Scheduler. 2025. url:
https://kubernetes.io/docs/reference/command- line- tools- reference/

kube-scheduler/.

[Kub25l] Kubernetes Documentation. kubelet: The Primary NodeÄgent. 2025. url: https:
//kubernetes.io/docs/reference/command-line-tools-reference/kubelet/.

[Kub25m] Kubernetes Documentation. Kubernetes Controller Manager. 2025. url: https://
kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-

manager/.

[Kub25n] Kubernetes Documentation. NFS Volume. 2025. url: https://kubernetes.io/
docs/concepts/storage/volumes/#nfs.

[Kub25o] Kubernetes Documentation. Persistent Volumes. 2025. url: https://kubernetes.
io/docs/concepts/storage/persistent-volumes/.

[Kub25p] Kubernetes Documentation. Pods. 2025. url: https : / / kubernetes . io / docs /

concepts/workloads/pods/.

[Kub25q] Kubernetes Documentation. Services. 2025. url: https://kubernetes.io/docs/
concepts/services-networking/service/.

74

https://www2.gov.pt/a-minha-rua
https://www2.gov.pt/a-minha-rua
https://www.govpilot.com/
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

[Kub25r] Kubernetes Documentation. StatefulSets. 2025. url: https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/.

[Kub25s] Kubernetes Documentation. Storage Classes. Accessed 2025-05-19. 2025. url: https:
//kubernetes.io/docs/concepts/storage/storage-classes/.

[Kub25t] Kubernetes Documentation.Vertical Pod Autoscaling. 2025. url: https://kubernetes.
io/docs/tasks/run-application/vertical-pod-autoscaling/.

[Lis25] Lisbon City Council.Na Minha Rua Lx. Accessed 2025. url: https://naminharualx.
cm-lisboa.pt/.

[LM10] Avinash Lakshman and Prashant Malik. “Cassandra - A Decentralized Structured
Storage System”. In: Operating Systems Review 44 (Apr. 2010), pp. 35–40. doi: 10.
1145/1773912.1773922.

[Min25] Inc. MinIO. Hyperscale Object Storage for AI. 2025. url: https://min.io.

[MQT24] MQTT. MQTT: The Standard for IoT Messaging. 2024. url: https://mqtt.org/.

[New15] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Me-
dia, 2015.

[Ope24] OpenAI. OpenAI API Documentation. 2024. url: https://openai.com/api/.

[Ope25] OpenAPI Initiative. OpenAPI Specification. 2025. url: https://github.com/OAI/
OpenAPI-Specification.

[Por25] Porto City Council. ReportaPorto. Accessed 2025. url: https://reportaporto.cm-
porto.pt/.

[Ran25] Rancher. K3s Documentation. 2025. url: https://k3s.io/.

[Spr25] Spring Team. Spring Framework. 2025. url: https://spring.io/.

[Tec25] TechEmpower. TechEmpower Framework Benchmarks. 2025. url: https://www.
techempower.com/benchmarks/.

[Uvi25] Uvicorn Documentation. Uvicorn: The lightning-fast ASGI server. 2025. url: https:
//www.uvicorn.org/.

[VMw24] VMware. RabbitMQ: Messaging that just works. 2024. url: https://www.rabbitmq.
com/.

75

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/run-application/vertical-pod-autoscaling/
https://kubernetes.io/docs/tasks/run-application/vertical-pod-autoscaling/
https://naminharualx.cm-lisboa.pt/
https://naminharualx.cm-lisboa.pt/
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://min.io
https://mqtt.org/
https://openai.com/api/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://reportaporto.cm-porto.pt/
https://reportaporto.cm-porto.pt/
https://k3s.io/
https://spring.io/
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/
https://www.uvicorn.org/
https://www.uvicorn.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Most Relevant Results
	Document Organization

	Preliminaries
	Related Work
	Background concepts
	Web Model
	FastAPI Web Framework
	Cassandra Database
	Column-Oriented Storage Model
	Typical Applications

	Image and Video Storage Solutions
	Storage Models Overview
	Comparative Analysis: Object vs File vs Database Storage
	MinIO vs. AWS S3

	Kubernetes
	Core Workload Controllers
	Networking and Service Discovery
	Persistent Storage
	Cluster Architecture
	Scalability and High Availability
	K3s: Lightweight Kubernetes Distribution

	Geographic Coordinate System
	Ray Casting Algorithm

	H3 Index
	Index Definition
	Neighborhood Traversal
	Subdivision for Irregular Polygon Regions
	Distortion

	Large Language Models (LLMs)
	Definition and Characteristics
	Cloud-Based vs. Self-Hosted Solutions
	Asynchronous LLM Processing

	Product and Vision Concept
	Vision Statement
	Product Concept Overview
	User-Centered Design
	Personas
	Scenarios
	User Stories
	Identified Use Cases
	Mobile Application
	Desktop Application

	Non-Functional Requirements

	Architecture Notebook
	Architecture Overview
	Architecture Diagram
	Deployment Diagram
	Data Access Diagram

	Technology Stack

	Implementation
	Frontend Applications
	Mobile Application
	Desktop Application
	Desktop App vs. Web App

	Backend Services
	API Design and Endpoints
	API Layer Architecture
	Middleware and Cross-Origin Resource Sharing (CORS)
	API Modularization and Routing
	Key API Endpoints and Functionalities
	Error Handling

	Database Integration
	Column-Based (Cassandra)
	Object Storage (MinIO)

	H3 Integration for Spatial Operations
	Organisation Indexing
	Incident Indexing

	Asynchronous Job Processing
	User Report Flow Description
	Job 1 - Generate Description, Category and Severity
	Job 2 - Cluster Related Reports
	Job 3 - Update Incident Description and Severity

	Security Mechanisms
	Tokens, Cookies and Session Management
	Login Process
	Successful Request Flow
	Failed Request Handling
	Access Token Refresh Mechanism
	Frontend Session Management
	Benefits of this Approach

	Role Based Access Controll (RBAC)

	Issue Automatic Resolution
	Backend Process Overview
	Existing Solutions for Video Transmission
	Smartphone Client
	ATCLL (PIXKIT) Integration

	Infrastructure and Deployment
	Kubernetes-Based Orchestration Setup
	Cassandra Deployment Setup
	Kafka & Zookeeper Deployment Setup
	MinIO & Redis Deployment Setup
	Stateless Deployments: Backend & LLM Consumers
	Final Steps for Deployment

	Quality Assurance
	Code Quality Standards
	Agile Methodology (Backlogs, Sprints, Workflows)
	Team Meetings and Retrospectives

	Conclusion and Future Work
	Conclusion
	Future Work Directions

	Bibliography

